
Chapter 14

Ideal Bose gas

In this chapter, we shall study the thermodynamic properties of a gas of non-interacting
bosons. We will show that the symmetrization of the wavefunction due to the indis-
tinguishability of particles has important consequences on the behavior of the system.
The most important consequence of the quantum mechanical symmetrization is the Bose-
Einstein condensation, which is in this sense a special phase transition as it occurs in a
system of non-interacting particles. We shall consider, as an example, a gas of photons
and a gas of phonons.

14.1 Equation of state

We consider a gas of non-interacting bosons in a volume V at temperature T and chemical
potential µ. The system is allowed to interchange particles and energy with the surround-
ings. The appropriate ensemble to treat this many-body system is the grand canonical
ensemble.

Non-relativistic Bosons. Our bosons are non-relativistic particles with spin s, whose
one-particle energies �(k)

�(k) = �(k) =
h̄2k2

2m
, �0 = �(0) = 0

include only the kinetic energy term.

Negative chemical potential. The chemical potential obeys, as discussed in Sect. 12.5.1,

−∞ < µ < �0, �0 = 0 .

A chemical potential larger than the lowest energy state would lead to nonphysical level
occupation.

n(�r) = �n̂r� =
1

eβ(�r−µ) − 1
.

Approaching the thermodynamic limit. We consider a situation when the gas is in
a box with volume V = LxLyLz and subject to periodic boundary conditions, as we did
for the case of fermions in Sect. 13.1.
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174 CHAPTER 14. IDEAL BOSE GAS

In the thermodynamic limit (N → ∞, V → ∞, with n = N/V = const), the sums over

the wavevector �k can be replaced by integrals as in the case of the Fermi gas.

However, here we have to be careful when µ happens to approach the value 0. In order
to see what kind of trouble we then might get into, let us calculate the ground state
occupation.

Occupation of the lowest energy state. We consider the expectation value of the
ground state for µ approaching zero from below, viz when −βµ � 1:

n(�0) =
1

e−βµ − 1
=

1

(1− βµ+ . . .)− 1
≈ − 1

βµ
, �0 = 0 ,

which means that n(�0) = �n̂r=0� diverges. The lowest energy state may hence by occupied
macroscopically. This is the case when

1

|µ|β ∼ N, |µ| ∼ kBT

N
, 1− z ∼ 1

N
. (14.1)

Density of states. The density of states D(E), which has the same expression (13.20)
as for fermionic systems,

D(E) ∼
√
E, lim

E→0
D(E) = 0,

vanishes for E → 0. This is where we are going to encounter a problem: if we replace

1

V

�

r

→
�

dE D(E)

we will get that the ground state has zero weight even though, as we have just shown that
it can be macroscopically occupied. Fermionic systems do not encounter this problem due
to the Pauli principle, which imposes that �n̂r� ∈ [0, 1].

Special treatment for the ground state. The problem with the potentially macro-
scopic occupation of the ground state can be solved by giving it via

βΩ(T, V, z) =
�

r

ln
�
1− e−β(�r−µ)

�
(14.2)

= (2s+ 1)
V

(2π)3
4π

� ∞

0

dk k2 ln
�
1− ze−β�(k)

�

+ (2s+ 1) ln(1− z)� �� �
occupation of the

ground state �(0) = 0

. (14.3)

a special treatment. Starting from the expression (12.35) for the bosonic grand canonical
potential Ω(T, V, µ) we have split the

�
r into an integral over all states, as in (13.3) for

the case of fermions, and into the �0 contribution (the last term).
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’Irrelevance’ of condensate. The ground state contribution (14.3) to the grand canon-
ical potential Ω is formally irrelevant in the thermodynamic limit as a consquence of the
scaling (14.1) of the chemical potential:

lim
V→0

ln(1− z)

V
≈ lim

V→0

− ln(N)

V
→ 0 .

We note, however, that the size of the condensate, that is the number of particles occu-
pying the ground state, determines how many particles occupy energiers E > E0, viz the
density of the normal fluid.

Dimensionless variables. With the dimensionless variable x and the thermal de Broglie
wavelength λ,

x = h̄k

�
β

2m
, λ =

�
2πβh̄2

m
,

we write (14.3) as

βΩ(T, V, z) =
2s+ 1

λ3

4V

π

� ∞

0

dx x2 ln
�
1− ze−x2

�
, (14.4)

all in parallel to the transformations performed for the Fermi gas. Compare Eq. (13.4)

Taylor expansion. We recall that the Taylor series expansion

ln(1− y) = −
∞�

n=1

yn

n
, |y| < 1

may be used, as done previously in Sect. 13.1.1, to express the integral

� ∞

0

dx x2 ln
�
1− ze−x2

�
= −

√
π

4

∞�

n=1

zn

n5/2

in terms of

g5/2(z) = − 4√
π

� ∞

0

dx x2 ln
�
1− ze−x2

�
=

∞�

n=1

zn

n5/2
. (14.5)

Note that g5/2(z) and f5/2(z), as defined in (13.5), differ by a sign (−1)n+1 in the summand.
For later uses we also define g3/2(z) as

g3/2(z) = z
d

dz
g5/2(z) =

∞�

n=1

zn

n3/2
. (14.6)

Note that f3/2(z) was defined analogously in (13.10) as zd(f5/2)/dz.

Bosonic grand canonical potential. With (14.5), the grand canonical potential (14.4)
takes the form

βΩ(T, V, z) = −2s+ 1

λ3
V g5/2(z) . (14.7)
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Except for the extra term on the right-hand side, and for an exchange g5/2 ↔ f5/2, it has
the same form as the expression (13.6) for the Fermi gas.

Pressure. From Ω = −PV and (14.7) we get

βP =
2s+ 1

λ3
g5/2(z) , (14.8)

in analogy to (13.7).

Particle density. For the particle density N/V we derived in Sect. 10.3.1 the relation

�N�
V

=
1

βV

�
∂

∂µ
lnZ

�
=

z

V

�
∂

∂z
lnZ

�
= −βz

V

�
∂

∂z
Ω

�
,

where we used (12.25), namely that βΩ = − lnZ. In this case the condensate term (14.3)
contributes. We then find

n =
2s+ 1

λ3
g3/2(z) +

2s+ 1

V

z

1− z
(14.9)

for the density of particles n = �N̂�/V in terms of the fugacity z, where where we have
used (14.7) and (14.6). The thermal equation of states then results from combining (14.8)
and (14.9).

Ground state occupation. The term

n0 =
2s+ 1

V

z

1− z
(14.10)

in (14.9) describes the contribution of the ground state to the particle density n. When
n0 becomes macroscopically large on speaks of a Bose-Einstein condensation.

Internal energy. The internal energy U is given by

U = −
�

∂

∂β
lnZ(T, z, V )

�

z,V

=

�
∂

∂β
βΩ(T, V, z)

�

z,V

. (14.11)

Note that the fugactity z is kept constant in above expression. Our result (14.7) states
that

βΩ(T, V, z) ∼ −λ−3 ∼ −β−3/2 ,

which then leads with (14.11) to

U

V
=

3kBT

2

2s+ 1

λ3
g5/2(z) . (14.12)

This expression is the same as the one for the Fermi gas when f5/2(z) is substituted by
g5/2(z). The reason is that the ground state energy �0 vanishes, �0 = 0. It does hence not
matter how many particle occupy the lowest energy level.
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Caloric equation of state. Combining (14.12) with (14.8) one can derive the caloric
equation of state:

U =
3

2
PV ,

which is identical to the one obtained for the ideal Fermi gas. Compare Eq. (13.13).

14.2 Classical limit

The classical limit (non-degenerate Bose gas) corresponds to low particle densities and
high temperatures. The fugacity is then small,

z = eβµ � 1 ,

with the Bose-Einstein distribution

�n̂r� =
1

z−1eβ�r − 1
=

ze−β�r

1− ze−β�r
≈ ze−β�r � 1

reducing to the Maxwell-Boltzmann distribution, just as for a fermionic system. The
differences between Bose-, Fermi- and Boltzmann statistics are in next order of the order
1/z and hence small.

Expansion in the fugacity. As z � 1, it is sufficient to retain only the first two terms
of the series for g5/2(z) and g3/2(z):

g5/2(z) ≈ z +
z2

25/2
, g3/2(z) ≈ z +

z2

23/2
.

With that, the particle density (14.9) takes the following form:

n ≈ 2s+ 1

λ3
z
�
1 +

z

23/2

�
+

2s+ 1

V

z

1− z
(14.13)

Irrelevance of the ground-state contribution. We note that the ground-state con-
tribution (14.10) vanishes generically in the thermodynamic limit, being proportional to
1/V . The number of particles occupying the ground state is finite only for z → 1. For
the case of small fugacities considered here we can neglect it generically, obtaining

n ≈ 2s+ 1

λ3
z
�
1 +

z

23/2

�
. (14.14)

Convergence radius. That ground state contributions can be generically neglected at
elevated temperatures follows also from the following consideration.

– An expansion in a physical parameter, like z or β, converges only as long as one
one remains within the same phase, here the high-temperature quasi-classical gas
phase.
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– An expansion diverges once a phase boundary is encountered, in our case the tran-
sition to a phase with macroscopically occupied ground-state level. A condensed
low-temperature state can therefore not be described within a high-temperature
expansion.

Classical limit. In the strict classical limit we retain only the the terms ∼ z on the
right-hand side of (14.14) We thus have that

nλ3 ≈ (2s+ 1)z(0), z(0) ≈ nλ3

2s+ 1
. (14.15)

in the zeroth approximation.

Classical equation of state. We note that (14.15) is identical to corresponding ex-
pression (13.15) for Fermions. The expression (14.8) for the pressure reduces then with
g5/2 → z(0) to the equation of state for classical particles:

βP =
2s+ 1

λ3

nλ3

2s+ 1
, V P = �N̂�kBT, n = �N̂�/V .

First order correction. We solve (14.15),

nλ3

2s+ 1
≈ z(0) ≈ z(1)

�
1 +

z(1)

23/2

�
≈ z(1)

�
1 +

z(0)

23/2

�

for z(1), obtaining

z(1) ≈ z(0)

1 + z(0)

23/2

≈ z(0)
�
1− z(0)

23/2

�
, (14.16)

which may be substituted in the pressure equation (14.8) for the ideal Bose gas:

βP ≈ 2s+ 1

λ3
g5/2(z) ≈ 2s+ 1

λ3
z(1) . (14.17)

Quantum correction. Taking all together, (14.17), (14.16) and (14.15), gives us

PV = �N̂�kBT
�
1− nλ3

4
√
2(2s+ 1)

�
. (14.18)

The last term in this expression are the quantum corrections.

– Equation of states for a real gas, like the van der Waals equation (6.11), posses
“similar” additive corrections with respect to the ideal case, which are however due
to the interaction between particles. The additive terms present in (14.18) originate
on the other side from the indistinguishability principle and not from the interaction
among particles.

– The correcting term for the ideal Fermi gas quasi-classical equation of state (13.16)
is positive, contributing as a “repulsion” among particles. For the Bose gas, the ad-
ditive term is negative and therefore contributes as an ”attraction” among particles.

Quantitatively, the quantum corrections are much smaller than terms coming from the
interaction among particles.
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14.3 Bose-Einstein condensation

We consider now the limit of high particle densities and low temperatures (quantum limit),
where one finds important qualitative differences between bosons, fermions and classical
particles.

Particle density. We rewrite the the particle density (14.9) as

n =

� ∞

0

D(�)d�

eβ(�−µ) − 1
+

2s+ 1

V

z

1− z
, (14.19)

where the the density of states D(�) is given by (13.20),

D(�) = A
√
�, A =

2s+ 1

(2π)2

�
2m

h̄2

�3/2

.

Dimensionless variables. The regular contribution to the particle density in (14.19)
can be evaluated for µ = 0 as

lim
µ→0

� ∞

0

A
√
�d�

eβ(�−µ) − 1
=

A

β3/2

� ∞

0

√
xdx

ex − 1
=

A

β3/2
· 2.61 ,

where we have used the dimensionless variable x = β�. The original expression (14.19)
for n then becomes

n = 2.61A(kBT )
3/2 +

2s+ 1

V

1

e−βµ − 1
, A =

2s+ 1

(2π)2

�
2m

h̄2

�3/2

. (14.20)

This is a mixed representation where we have taken the limes µ → 0 for the regular
contribution, but not for the occupation of the ground state.

Bose-Einstein condensation. It is evident from (14.20) that there is a critical temper-
ature Tc,

n = 2.61A(kBTc)
3/2, n = 2.61

2√
π

2s+ 1

λ3
c

, λc =

�
h2

2πmkBTc

(14.21)

for which the regular contribution would fall below the desired particle density n. We
have used that (4π)3/2/4π2 = 2/

√
π.

– Tc is the Bose-Einstein transition temperature.

– A non-vanishing negative chemical potential µ < 0 would lead to an even small
regular term in (14.19). There is therefore no way that the regular term could
account for all particle for T < Tc.

– The transition takes place when nλ3
c/(2s + 1) = 2.61 · 2/√π ≈ 2.9, viz when the

thermal wavelength λc is of the order of the inter-particle distance.
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Scaling of the chemical potential. Rewriting (14.20) for small |µ| as

n− nc(T ) ∼ 2s+ 1

V

kBT

−µ
, (−µ) ∼ 2s+ 1

V

kBT

n− nc(T )
, (14.22)

where nc(T ) = 2.61(2s + 1)/λ3. The chemical potential scales therefore like 1/V , viz it
strictly vanishes only in the thermodynamic limit V → ∞.

First excited state. The energy level are quantized for a particle in a box,

�(k) =
k2
x + k2

y + k2
z

2m
, kα =

2π

Lα

nα, α = x, y, z ,

as discussed in Sect. 13.1. The volume is with V = LxLyLz the product of the linear
dimensions.

Diverging occupation of the first excited state. The energy �1 of one of the first
excited states, corresponding e.g. to (nx, ny, nz) = (1, 0, 0), then scales as

�1 ∼ 1

L2
x

∼ V −2/3, �1 � |µ| ∼ V −1 .

The occupation n1 of the first excited state,

n1 =
1

eβ(�1−µ) − 1
≈ 1

eβ�1 − 1
≈ 1

1 + β�1 − 1
∼ V 2/3,

therefore diverges in the thermodynamic limit V → ∞. The ground-state occupation
n0 ∼ V diverges in contract to a macroscopic value.

The Bose-Einstein condensation is characterized by divergences
in occupation numbers. The ground state is however the only
state with a macroscopic occupation number.

Experimental verification. The Bose-Einstein condensation was predicted by Satyen-
dra Bose and Albert Einstein in 1924-1925. It took almost 70 years to have an ex-
perimental corroboration of this phenomenon with the ultracold gas systems. Previous
experiments had been done with 4He as well as with hydrogen.


