Nitrogen Metabolism

The biosynthetic pathways leading to amino acids and nucleotides share a requirement for nitrogen. Biologica])

nitrogen compounds are generally scarce in nature, most organisms maintain economy in their use of ammonig &miy uﬂeful
and nucleotides. Free amino acids, purines and pyrimidines formed during metabolic turnover of proteins and nué]eic 10 acigy
often reused. Acidy gy
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Fig. 16.54 Nitrogenase enzyme complex
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Nitrate and Ammonium
Assimilation

Many mineral nutrients absorbed from the soil by the roots
and incorporation into the organic compounds that are
essential for growth and development. This incorporation of
mineral nutrients into organic substances such as pigments,

enzyme cofactors, lipids, nucleic acids and amino acids is
termed nutrient assimilation.

Asgimilation of nitrogen and sulphur requires a complex
geries of biochemical reactions that are among the most
energy-requiring reactions in living organisms: ?

L In nitrate (NO;") assimilation, the nitrogen in NO,~
is converted to a higher-energy form in nitrite (NO,"),
then to a yet higher-energy form in ammonium (NH,*),
and finally into the amide nitrogen of glutamine. This

process consumes the equivalent of 12 ATPs per
nitrogen.

+ Plants such as legumes form symbiotic relationships
with nitrogen-fixing bacteria to convert molecular
nitrogen (N,) into ammonia (NH,). Ammonia (NH,) is
the first stable product of natural fixation; at
physiological pH, however, ammonia is protonated to
form the ammonium ion (NH**). The process of
biological nitrogen fixation, together with the
_subsequent assimilation of NH, into an amino acid,

" consumes about 16 ATPs per nitrogen.
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Symbiotic Nitrogen Fixing Organisms

B Host
Legumes and Parasponia

AZzorhizobium
Sradyrhizobium
Photarhizobium
Rhizobium
) Sinorhizobium
Actinomycetales
Frankia
Cyanobacteria

Gunnera (angiosperm)
Macrozamia (gymnosperm)
Azolla (pteridophyte)
Blasia (bryophyte)
Rhizalenia (diatom)
Lichens

Siphonochaliana (sponge)

Associations Between Host Plants and Rhizobia

Plant host Rhizobial symbiont

Parasponia (a non-lequme, BGradyrhizobium sp.
formerly called Trema)

Soyabean (Glycine max)

Br:adyrhizobium Jjaponicum
(slow-growing . type);
Sinorhizobium fredii (fast-growing

type)

Sinorhizobium meliloti
Azorhizobium (forms both root and
stem nodules; the stems have
adventitious roots)

Rhizobium leguminosarum var.
phaseoli; * Rhizobium  tropicii;
Rhizobium etli _
Rhizobium leguminosarum -var.

Alfalfa (Medicago sativa)
Sesbania (aquatic)

Bean (Phaseolus)

Clover (Trifolium)

(photosynthetically active rhizobia
that form stem nodules, probably
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Fig. 16.55 NH," toxicity can dissipate pH gradients

Nitrate Reductase

Plants assimilate most of the nitrate absorbed by their roots
into organic nitrogen compounds. The first step of thjs
process is the reduction of nitrate to nitrite in the cytoso]
(Oaks; 1994). The enzyme nitrate reductase catalyzes thig
reaction.

NO;™ + NAD(P)H + H* + 2e"— NO,~ + NAD(P)* + H,0

The nitrate reductases of higher
plants

—

Nitrate Reductases

are composed of two

identical subunits, each containing H

L associated with adventitious roots)

Etc;utrast to nitrate, high levels of ammonium are toxic to

tonme -Plants  and  animals, Ammonium  dissipates
" wmembra'ne Proton gradients that are required for both
Photosynthetic and respiratory electron transport,

itofii t
' ‘ trt, ‘?/" . . three prosthetic groups: FAD |
Pea (Pisum sativum) Rhizobium leguminosarum var. (Flavin Adenine Dinucleotide), )\\
viciae ‘ haeme, and a molybdenum H,N
Aeschenomene (aquatic)  Photorhizobium complexed to an organic molecule Fig. 16.56 A'pterin

called a pterin.

Nitrate reductase is the main
molybdenum-containing protein in vegetative tissues and one
symptom of molybdenum deficiency is ‘the accumulation of
nitrate.The three-domain model for nitrate reductase function
coordinately. The FAD-binding domain accepts two electrons
from NADH or NADPH. The electrons then pass through the
haeme domain to the molybdenum complex, where they are
transferred to nitrate,

(fully oxidized)
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Fig. 16.58 Mode! for coupling of photosynthetic electron flow, via ferredoxin, to the reduction of nitrite by nitrite reductase

Plants Assimilate Nitrate in both Roots
and Shoots

Iz many plants, when the roots receive small amounts of
nitrate, nitrate is reduced primarily in the roots.'In plants such
as the cocklebur (Xanthium strumarium), nitrate metabolism
is restricted to the shoot; in other plants, such as white lupine
Lupinus albus), most nitrate is metabolized in the roots.
| Generally, species native to temperate regions rely more

' heavily on nitrate assimilation by the roots than do species of
| tropical or subtropical origins.

Ammonium Assimilation

Plant cells avoid ammo
the ammonium gener
photorespiration into

Tl?e primary pathway for conversion of ammonium to amino
acids involves the sequential actions of glutamine
synthetase and glutamate synthase.

¢ Glutamine synthetase (GS) combines ammonium with
glutamate to form glutamine.

nium toxicity by rapidly converting
ated from nitrate assimilation or
amino acids,
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Nitrite Reductase Converts Nitrite to
Ammonium

Plant cells immediately transport the nitrite generated by
nitrate reduction from the cytosol into chloroplasts in leaves
and plastids in roots. In these organelles, the enzyme nitrite
reductase reduces nitrite to ammonium.

NO,”+6Fd +8H + 6e” - NH," + 6 Fd,, + 2H,0 .

Chloroplasts and root plastids contain different forms of the
enzyme, but both forms consist of a single polypeptide
containing two prosthetic groups: an iron-sulphur cluster

(Fe,S,) and a specialized heme. These groups acting together
bind nitrite and reduce it directly to ammonium.

Nitrite reductase is encoded in the nucleus and synthesized

in the cytoplasm with an N-terminal transit peptide that
targets it to the plastids.

+

NOZ_ Nitrite

(Fe,Sy) LQ» Haeme

Nitrite reductase \ NH 4+A1;umonia

Glutamate + NH,* + ATP — Glutamine + ADP + P,
Elevated plastid levels of glutamine stimulate the activity of
glutamate synthase (also known as glutamine-
2-oxoglutarate aminotransferase or GOGAT). This enzyme
transfers the amide group of glutamine to 2-oxoglutarate,
yielding two molecules of glutamate. Plants contain two types
of GOGAT: One accepts electrons from NADH; the other
accepts electrons from ferredoxin (Fd).

Glutamine + 2-6xoglutarate + NADH + H* —

2 glutamate + NAD"
Glutamine + 2-oxoglutarate + Fd,.q > 2 glutamate + Fd__
The NADH type of the enzyme (NADH-GOGAT) is located

in plastids of non-photosynthetic tissues such as roots or
vascular bundles of developing leaves.

The ferredoxin-dependent type of glutamate synthase
(Fd- GOGAT) is found in chloroplasts and serves in -
photorespiratory nitrogen metabolism. '
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Fig. 16.59 The GS-GOGAT pathway that forms glutamine and
leaves and NADH in non-photosynthetic tissue.

glutamate. Areduced cofactor is required for the reaction: ferredoxin in Qreen
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