Economics Honours (Sixth Semester)

Basic Econometrics

Application of Multiple Regression Analysis

*Problem

Table 1 stated below gives the bushels of corn per acre, Y, resulting from use of various amounts of fertilizer X_1 and insecticides X_2 both in pounds per acre, from 1971 to 1980. Run a multiple regression analysis in three variables and test the significance of the partial regression coefficients. Also determine the overall significance of the regression.

Table 1: Data on Corn produced with Fertilizer and Insecticide

Year	Y	X_1	X_2
1971	40	6	4
1972	44	10	4
1973	46	12	5
1974	48	14	7
1975	52	16	9
1976	58	18	12
1977	60	22	14
1978	68	24	20
1979	74	26	21
1980	80	32	24

Source: [The problem and the Table has been taken from Schaum's Outlines on Statistics and Econometrics by Dominick Salvatore and Derrick Reagle]

*Solution:

Suppose the sample linear regression model in three variables for running multiple regression is of the form,

$$Y = \beta^{\circ}_{0} + \beta^{\circ}_{1}X_{1} + \beta^{\circ}_{2}X_{2} + u^{\circ}$$

where Y = bushels of corn per acre, $X_1 =$ use of various amounts of fertilizer and X_1 and $X_2 =$ insecticides (both in pounds per acre), $\beta^{\hat{}}_0 =$ intercept coefficient, $\beta^{\hat{}}_1$ measures the change in the mean value of Y, per unit change in X_1 , holding the value of X_2 constant. Similarly, $\beta^{\hat{}}_2$ measures the change in the mean value of Y per unit change in X_2 , holding the value of X_1 constant. $\beta^{\hat{}}_1$ and $\beta^{\hat{}}_2$ are known as partial regression coefficients; $y^{\hat{}}_1 =$ residual term.

Table 1: Showing statistical working corn-fertilizer-pesticide problem

Year	Obs	(Y) (Corn)	(X ₁) (Fertilizer)	(X ₂) (Pesticide)	у	X ₁	X ₂
1971	1	40	6	4	-17	-12	-8
1972	2	44	10	4	-13	-8	-8
1973	3	46	12	5	-11	-6	-7
1974	4	48	14	7	-9	-4	-5
1975	5	52	16	9	-5	-2	-3
1976	6	58	18	12	1	0	0
1977	7	60	22	14	3	4	2
1978	8	68	24	20	11	6	8
1979	9	74	26	21	17	8	9
1980	10	80	32	24	23	14	12
	n=10	$\Sigma Y = 570$ $Y^{-} = 57$	$\Sigma X_1 = 180$ $X_1^- = 18$	$\Sigma X_2 = 120$ $X_2^- = 12$	$\Sigma y_i = 0$	$\Sigma x_1 = 0$	$\Sigma x_2 = 0$

Table 1: Showing statistical working corn-fertilizer-pesticide problem contd...

Obs	(Y) (Corn)	(X ₁) (Fertilizer)	(X ₂) (Pesticide)	x_1y	x_2y	x_1x_2	x_1^2	X_2^2
1	40	6	4	204	136	96	144	64
2	44	10	4	104	104	64	64	64
3	46	12	5	66	77	42	36	49
4	48	14	7	36	45	20	16	25
5	52	16	9	10	15	6	4	9
6	58	18	12	0	0	0	0	0
7	60	22	14	12	6	8	16	4
8	68	24	20	66	88	48	36	64
9	74	26	21	136	153	72	64	81
10	80	32	24	322	276	168	196	144
n =10	$\Sigma Y = 570$ $Y^{-} = 57$	$\Sigma X_1 = 180$ $X_1^- = 18$	$\Sigma X_2 = 120$ $X_2^- = 12$	$\sum x_1 y = 956$	$\begin{array}{c} \Sigma x_2 y = \\ 900 \end{array}$	$\Sigma x_1 x_2 = 524$	$\sum x_1^2 = 576$	Σx_2^2 =504

[Note: $y = (Y-Y_1^-), x_1 = (X_1-X_1^-) \text{ and } x_2 = (X_2-X_2^-)$]

*1. Determining the regression coefficients:

[Discussed in Multiple regression analysis]

$$\beta^{\hat{}}_{1} = \underbrace{(\Sigma x_{1} y) (\Sigma x_{2}^{2}) - (\Sigma x_{2} y) (\Sigma x_{1} x_{2})}_{(\Sigma x_{1}^{2}) (\Sigma x_{2}^{2}) - (\Sigma x_{1} x_{2})^{2}} = \underbrace{(956)(504) - (900)(524)}_{(576)(504) - (524)^{2}} = 0.65$$

$$\beta^{\hat{}}_{2} = \underbrace{(\Sigma x_{2} y) (\Sigma x_{1}^{2}) - (\Sigma x_{1} y) (\Sigma x_{1} x_{2})}_{(\Sigma x_{1}^{2}) (\Sigma x_{2}^{2}) - (\Sigma x_{1} x_{2})^{2}} = \underbrace{(900)(576) - (956)(524)}_{(576)(504) - (524)^{2}} = 1.11$$

$$\beta^{\hat{}}_{0} = Y^{\hat{}} - \beta^{\hat{}}_{1} X^{\hat{}}_{1} - \beta^{\hat{}}_{2} X^{\hat{}}_{2} = 57 - (0.65)(18) - (1.11)(12) = 31.98$$

The estimated multiple regression equation is = $31.98 + 0.65 X_1 + 1.11X_2$

*2. Testing the significance of partial regression coefficients:

To test for the significance of partial regression coefficients, we need first to determine se $(\beta^{\hat{}}_1)$ and se $(\beta^{\hat{}}_2)$.

Table 2: Calculations for testing the significance of $(\beta^{\hat{}}_{1})$ and $(\beta^{\hat{}}_{2})$

Obs	(Y)	(X_1)	(X_2)	Ŷ	u^	u^2	y^2
	(Corn)	(Fertilizer)	(Pesticide)				
1	40	6	4	40.32	-0.32	0.1024	289
2	44	10	4	42.92	1.08	1.1664	169
3	46	12	5	45.33	0.67	0.4489	121
4	48	14	7	48.85	-0.85	0.7225	81
5	52	16	9	52.37	-0.37	0.1369	25
6	58	18	12	57.00	1.00	1.000	1
7	60	22	14	61.82	-1.82	3.3124	9
8	68	24	20	69.78	-1.78	3.1684	121
9	74	26	21	72.19	1.81	3.2761	289
10	80	32	24	79.42	0.58	0.3364	529
n=10	$\Sigma Y = 570$	$\Sigma X_1 = 180$	$\Sigma X_2 = 120$		$\Sigma u^{\wedge} = 0$	$\Sigma u^{\wedge^2} =$	Σy^2
	$Y^{-} = 57$	$X_1^- = 18$	$X_2^- = 12$			13.6704	= 1634

We get from the formulae determined in previous lesson

$$\sigma^2 = \sigma^{^2} = \frac{\sum u^2}{(n-k)} = \frac{13.6704}{(10-3)} = 1.9529$$

Var
$$(\beta_1^*) = \sigma^2$$
. $\sum x_2^2$ = $\frac{1.9529 \text{ x}}{(576)(504) - (524)^2} = 0.06$

se
$$(\beta_1^2) = \sqrt{\text{Var}(\beta_1^2)} = \sqrt{0.06} = 0.24$$

Var $(\beta_2^2) = \sigma^2 \cdot \frac{\sum x_1^2}{\sum x_1^2 \sum x_2^2 - (\sum x_1 x_2)^2} = \frac{1.9529 \text{ x}}{(576)(504) - (524)^2} = 0.07$

se
$$(\beta^2) = \sqrt{\text{Var}(\beta^2)} = \sqrt{0.07} = 0.27$$

To test the significance of the partial regression coefficient β_1 we set the null hypothesis against the alternative hypothesis as

 $H_0: \beta_1 = 0,$

against

 $H_1: \beta_1 \neq 0.$

• Here the null hypothesis states that with X_2 held constant, X_1 has no influence on Y. To test the null hypothesis we compute the value of t.

$$t_I = \underline{\beta}^{\wedge}_1 - \underline{\beta}_1$$

se $(\beta^{\hat{}}_1)$

Therefore $t_I = (\beta_1^* - \beta_1)/ \text{ se } (\beta_1^*) = (0.65 - 0)/0.24 = 2.7$

• Again to test the significance of the partial regression coefficient β_2 we set the null hypothesis against the alternative hypothesis as

 $H_0: \beta_2 = 0,$

against

 $H_1: \beta_2 \neq 0.$

Here the null hypothesis states that with X_1 held constant, X_2 has no influence on Y. To test the null hypothesis we compute the value of t.

$$t_2 = \underline{\beta^{\hat{}}_2 - \beta_2}$$
 se $(\beta^{\hat{}}_2)$

Therefore

$$t_2 = (\beta^2 - \beta_2) / \text{ se } (\beta^2) = (1.11 - 0) / 0.27 = 4.11.$$

Since both t_1 and t_2 exceed t=2.365 with 7 degrees of freedom (df) at 5% level of significance, we reject the null hypotheses in both the cases and conclude that both β_1 and β_2 (the partial regression coefficients) are statistically significant at the 5% level.

*3. Overall significance of the regression

To test the overall significance of the regression we must first determine the Coefficient of Multiple Determination, R².

The formula for $R^2 = 1 - (\Sigma u^2)/\Sigma y^2$

In our example, we get $R^2 = 1$ - (13.6704/1634) = 1 - 0.0084 = 0.9916 = 99.16%.

We use the F test to test the overall significance of the multiple regression. We set the null hypothesis against the alternative hypothesis as

$$H_0: \beta_1 = \beta_2 = 0,$$

(all slope coefficients are simultaneously zero)

against

H₁: Not all slope coefficients are simultaneously zero

To test the null hypothesis we compute the value of F.

$$F = R^2/(k-1)$$

 $(1-R^2)/(n-k)$

where n = number of observations, k = total number of parameters in the multiple regression model and $R^2 =$ Coefficient of determination of the multiple regression model.

Therefore
$$F_{2,7} = \frac{0.9916/2}{(1-0.9916)/7} = 413.17$$

The calculated value of F exceeds the tabular value of F = 4.74 at the 5% level of significance and with numerator df = 2 and denominator df = 7, the null hypothesis is rejected and we conclude that R^2 is significantly different from zero.

*Exercise

1. For the given data solve the questions that follow:

n	1	2	3	4	5	6	7	8	9	10
Y	20	28	40	45	37	52	54	43	65	56
X_1	2	3	5	4	3	5	7	6	7	8
X_2	5	6	6	5	5	7	6	6	7	7

- (a) Determine the regression coefficients
- (b) Determine the regression equation
- (c) Test the significance of the partial regression coefficients
- (d) Determine the coefficient of multiple regression
- (e) Test the overall significance of the regression
- (f) Determine the partial correlation coefficients

*N.B. The problem, explanations of all the theories and solution to the problem has been accessed from the reference mentioned.

References:

Salvatore, D., & Reagle, D. (2011). *Schaum's outline of statistics and econometrics* (2nd ed.). McGraw-Hill Education.