Physics Honors. Semester – II; 2020.

Alokkumar De.

Theory of Errors: Systematic and Random Errors. Propagation of Errors. Normal Law of Errors. Standard and Probable Error.

Theory of Errors. PART - II

Some specific cases:

01.Sum

Let

x=u+a where x → variable dependent on the measured variable u. a → constant.

$$\left(\frac{\partial x}{\partial u}\right) = 1$$

And thus

 $\sigma_x = \sigma_u$.

This yields, relative uncertainty as

$$\frac{\sigma_x}{x} = \frac{\sigma_u}{x} = \frac{\sigma_u}{u+a}.$$
 (14)

02. Difference

lf x=u-a

$$\frac{\sigma_x}{x} = \frac{\sigma_u}{u-a}.$$
 (15)

03. Weighted Sum

Let

x=au+bv where $x \rightarrow$ Weighted sum of u and v.. a, b \rightarrow constants.

$$\left(\frac{\partial x}{\partial u}\right) = a \qquad \left(\frac{\partial x}{\partial v}\right) = b$$

And thus

$$\sigma_x^2 = a^2 \sigma_u^2 + b^2 \sigma_v^2 + 2ab \sigma_{uv}^2 \qquad \dots \qquad \dots \qquad \dots \qquad (16)$$

04. Multiplication

Let

x=auv where u, v \rightarrow two variables. a \rightarrow constant.

$$\left(\frac{\partial x}{\partial u}\right) = av \qquad \left(\frac{\partial x}{\partial v}\right) = au$$

Thus , we can write the variance of x as

$$\sigma_x^2 = (av\sigma_u)^2 + (au\sigma_v)^2 + 2a^2uv\sigma_{uv}^2 \qquad \dots \qquad \dots \qquad \dots \qquad (17)$$

which gives

$$\frac{\sigma_x^2}{x^2} = \frac{\sigma_u^2}{u^2} + \frac{\sigma_v^2}{v^2} + 2\frac{\sigma_{uv}^2}{uv}$$
 18

05. Division

lf

$$x = \frac{au}{v},$$
$$\frac{\sigma_x^2}{x^2} = \frac{\sigma_u^2}{u^2} + \frac{\sigma_v^2}{v^2} - \frac{\sigma_{uv}^2}{uv}$$

20.

06. Power

lf

 $x = au^{b},$ $\left(\frac{\partial x}{\partial u}\right) = abu^{b-1} = \frac{bx}{u}$

Therefore

$$\frac{\sigma_x}{x} = b \frac{\sigma_u}{u} \qquad \dots \qquad \dots \qquad \dots \qquad 21$$

Normal Distribution:

The distribution of a random variable which follows Gaussian one is what is said to be normal distribution [05].

In probability theory, Normal or Gaussian or Gauss or Laplace-Gauss distribution is a type of continuous probability distribution for a real valued random variable. The general form of probability density function is given by

where

 $\mu \rightarrow$ mean or expectation of the distribution

 $\sigma \rightarrow$ standard deviation,

 $\sigma^2 \rightarrow$ variance of the distribution.

Sometimes a normal distribution (Fig. 03) is informally called a *bell curve*.

In the special case when $\mu = 0$ and $\sigma = 1$, one obtains the simplest case of normal distribution. This is known as the standard normal distribution. Probability density function for the same is described by

Fig. 03." For the normal distribution, the values less than one standard deviation away from the mean account for 68.27% of the set; while two standard deviations from the mean account for 95.45%; and three standard deviations account for 99.73%."[05]

Standard error:

"a measure of the statistical accuracy of an estimate, equal to the standard deviation of the theoretical distribution of a large population of such estimates."

Oxford

The **standard error** (**SE**) of a statistic (usually an estimate of a parameter) is the standard deviation of its sampling distribution or an estimate of that standard deviation. If the parameter or the statistic is the mean, it is called the **standard error of the mean** (**SEM**).[06]

" the relationship between the standard error and the standard deviation is such that, for a given sample size, the standard error equals the standard deviation divided by the square root of the sample size. In other words, the standard error of the mean is a measure of the dispersion of sample means around the population mean."[06]

The standard error of the mean (SEM) can be expressed as

$$\sigma_x = \frac{\sigma}{\sqrt{n}} \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad (24)$$

where

 $\sigma \rightarrow$ standard deviation of the population and

 $n \rightarrow$ number of observations (size) of the sample.

The standard error of the mean is usually estimated as

$$\sigma_x \approx \frac{s}{\sqrt{n}} \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad (25)$$

Since the population standard deviation is is seldom known. In the above equation (25)

s is the sample standard deviation, i.e., the sample-based estimate of the standard deviation of the population.

Probable error:

"In statistics, **probable error** defines the half-range of an interval about a central point for the distribution, such that half of the values from the distribution will lie within the interval and half outside." [07, 08]

References:

- [01] https://www.physics.umd.edu/courses/Phys276/Hill/Information/Notes/ErrorAnalysis.html
- [02] https://sciencing.com/difference-between-systematic-random-errors-8254711.html
- [03] https://en.wikipedia.org/wiki/Propagation_of_uncertainty ; and the references therein
- [04] circuit globe.com
- [05] https://en.wikipedia.org/wiki/Normal_distribution
- [06] https://en.wikipedia.org/wiki/Standard_error
- [07] Dodge, Y. (2006) The Oxford Dictionary of Statistical Terms, OUP. ISBN 0-19-920613-9
- [08] https://en.wikipedia.org/wiki/Probable_error

Special statement: All the particulars provided here are as study material for the students and not for any other purpose. It has been sincerely tried to mention the concerned references wherever required.