Economics Honours (Semester VI) Basic Econometrics Multiple Regression Analysis

*Meaning

Multiple Regression analysis studies the influence of two or more independent variables on a dependent variable. It is said to be an extended form of the simple regression model. The simplest form of multiple regression model is the three-variable model with one dependent variable, that is the regressand and two independent or explanatory variables also called the predictors or regressors.

The three-variable Population Regression Function can be written as

$$Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + u_i$$

where Y is the dependent variable, X_2 and X_3 , the explanatory variables, u, the disturbance or error term, the coefficients β_1 , the intercept term, β_2 and β_3 denote the partial regression coefficients or the partial slope coefficients and i denotes the ith observation in the data series. *Assumptions*

- 1. Zero mean value of u_i, for each i
- 2. No serial correlation, or cov $(u_i, u_j) = 0$ i $\neq j$
- 3. Homoscedasticity, or var $(u_i) = \sigma^2$
- 4. Zero covariance between u_i and each X variable, or cov (u_i , X_{2i}) = cov (u_i , X_{3i}) = 0
- 5. No specification bias, or the model is correctly specified
- No exact collinearity between the X variables, or no exact linear relationship between X₂ and X₃
- 7. Linear in the parameters, that the values of the regressors are fixed in repeated sampling, and that there is sufficient variability in the values of the regressors.

*The Meaning of Partial Regression Coefficients

The regression coefficients β_2 and β_3 are known as partial regression or partial slope coefficients. β_2 measures the change in the mean value of Y, per unit change in X₂, holding the value of X₃ constant. Similarly, β_3 measures the change in the mean value of Y per unit change in X3, holding the value of X2 constant.

*OLS Estimators

R^{2} AND THE ADJUSTED R^{2}

In the three variable model we would like to know the proportion of the variation in Y explained by the variables X_2 and X_3 jointly. The quantity that gives this information is known as the multiple coefficient of determination and is denoted by R^2 .

Given TSS = ESS + RSS

i.e. Total sum of Squares = Explained sum of squares + Residual sum of squares,

we have,
$$R^2 = ESS / TSS$$

= $\frac{\beta_2^2 \Sigma y_i x_{2i} + \beta_3^2 \Sigma y_i x_{3i}}{\Sigma y_i^2}$
Or, = 1- RSS/TSS = 1 - $(\Sigma u_i^2) / \Sigma y_i^2$ (9)

The value of R^2 lies between) and 1. The coefficient of multiple correlation is denoted by R and it is a measure of the degree of association between Y and the explanatory variables.

An important property of R^2 as the number of regressors increases, R^2 almost invariably increases and never decreases. Stated differently, an additional X variable will not decrease R^2 . Thus, in comparing two regression models with the same dependent variable but differing number of X variables, one should be very wary of choosing the model with the highest R^2 . To compare two R^2 terms, one must take into account the number of X variables present in the model. This can be done readily if we consider an alternative coefficient of determination, which is known as the adjusted R^2 , denoted by R^{-2} , (pronounced as R bar square). The term adjusted means adjusted for the degrees of freedom (df) associated with the sums of squares entering into Σu_i^2 having (n - k) df in a model involving 'n' observations and k parameters including the intercept term and Σy_i^2 having (n - 1) df. So

*N.B. Explanations of all the theories have been taken from the following reference:

References:

Gujarati, D. N. Porter, D.C., Gunasekar, S. (2009), *Basic econometrics*. (Fifth ed.) McGraw-Hill Education (India).