RANIGANJ GIRLS' COLLEGE

SEARSOL, RAJBARI, RANIGANJ, PASCHIM BARDHAMAN DEPARTMENT OF ZOOLOGY CORE COURSE - III UNIT - 3

RESPIRATION IN ARTHROPODA

Dr. Tuhin Subhra Ghosh Assistant Professor Department of zoology Raniganj Girls' College Searsole, Paschim Bardhaman

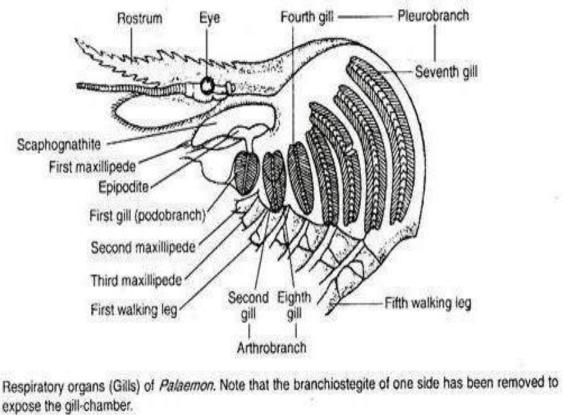
RESPIRATION IN ARTHROPODA

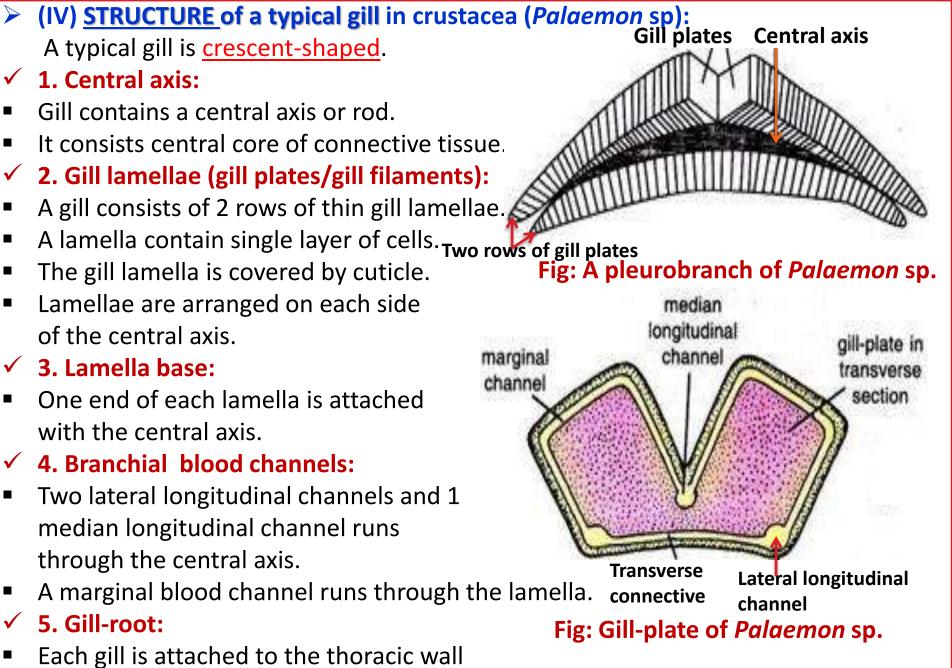
Introduction:

- Arthropoda is the largest Phylum of the animal kingdom which comprises of 70-80 % of animals.
- They live in diverse types of habitats, thus, developed a wide variety of respiratory systems.
- **Embryonic origin:** The Respiratory system is ectodermal in origin.
- **Respiratory method:**
- The gas exchange takes place across a respiratory surfaces through the simple diffusion.
- **Respiratory Surfaces:**
- > The primary requirements for efficient gas exchange across the cell surfaces:
- ✓ 1. Moist surface : It dissolves the gases across the cell membrane.
- ✓ 2. Thin surface : The single cell lining optimizes gas diffusion.
- ✓ 3. Large surface : It allow for adequate gas exchange.
- ✓ 4. Rich blood supply: It maintains a diffusion gradient.
- ✓ 5. Direct contact: The source of O_2 must remain in direct contact.
- ✓ 6. Ventilation: The flow of respiratory medium over the respiratory surface.
- ✓ 7. Examples: The outer surface, skin, gills, tracheae, and lungs etc.

Respiratory Media:

- Animal can use <u>water</u> or <u>air</u> as the source of O₂.
- In a given volume less O₂ is available in water than in air.
- Obtaining O₂ from water requires greater efficiency than air breathing.
- **Respiratory pigments:**
- They are generally dissolved in the blood plasma.
- The respiratory pigments are:-
- ✓ Hemocyanin (metalloprotein):
- Most common in many crustaceans & a few centipedes.
- Transport O₂ in the hemolymph.
- Containing copper as O₂ binding agent.
- ✓ Hemoglobin (metalloprotein):
- Found in a few crustaceans and insects (*Anopheles, Apes* etc.).
- Containing iron as O₂ binding agent.
- Few insects (e.g. blood worm) uses it for storing O₂.


- ***** FORMS OF RESPIRATION AND ASSOCIATED ORGANS IN ARTHROPODA:
- 1. <u>AQUATIC RESPIRATION (absorb oxygen from water)</u>:
- > 1. Gills or Branchiae: Examples: Crustaceans (Palaemon sp., Penaeus sp.).
- > 2. Tracheal gills: Ex.: May fly nymph, Damsel fly nymph.
- > 3. Blood gills: Ex.: Blood worm (*Chironomus* larva), black fly larva (*Simulium* larva).
- ➤ 4. Rectal gills: Ex.: Dragon fly nymph.
- > 5. Book gills: Ex.: Horseshoe crab (*Limulus* sp.).
- > 6. Plastron: Ex.: Riffle beetles, water boatman (*Notonecta* sp.) etc.
- > 7. Air bubble: Ex.: Diving beetle (*Rhantus* sp.), water spiders (*Argyroneta* sp.).
- > 8. Breathing tube: Ex.: Water scorpion (*Nepa* sp.), mosquito larvae (*Culex* sp.).
- > 9. Cutaneous respiration: Ex.: Chironomus larva.
- > 10. Lining of Branchiostegites: Ex.: Inner lining of crustacean gill cover.
- > 11. Epipodites: Ex.: Coxal segment of maxillipeds in prawn.
- 2. <u>AERIAL RESPIRATION (absorb oxygen from air)</u>:
- 1. Trachea: Ex.: Insects, centipedes, millipedes, arachnids.
- > 2. Lungs: Ex.: Terrestrial hermit crabs (*Birgus* sp., *Coenobita* sp.).
- 3. Book-lungs: Ex.: Spiders and scorpions.
- > 4. Pseudotracheae or lungs: Ex.: wood lice (Oniscus sp.).


DEVICES OF <u>AQUATIC</u> RESPIRATION:

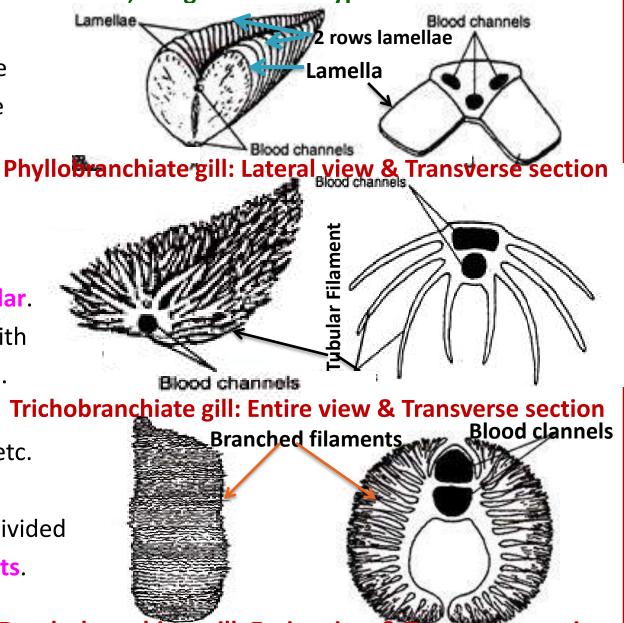
1. <u>GILLS OR BRANCHIAE</u>: Aquatic mode of respiration.

➤ (I) <u>OCCURRENCE</u>:

- In aquatic arthropods. Best developed in crustaceans.
- In some forms, special types of gills are often found.
- ➤ (II) LOCATION:
- The Gills are located within the gill chamber.
- The gill chamber is situated on each lateral side of the cephalothorax.
- The gill chamber is covered by expose the gill-chamber.
 the branchiostegite or carapace.
- ➤ (III) <u>ORIGIN</u> :
- Gill develops as the outpushings of the body wall.
- Gills are the outgrowths of the thoracic limbs in <u>Amphipods</u>.
- Endopodites of the 2nd and 5th pleapods are modified as gills in <u>Isopods</u>.

by a small connection called gill root.

✓ 6. Gill chamber:


- Gills are located within a gill chamber in Decapoda crustaceans.
- Gill chamber is covered by a carapace.
- In most crustacean, gills are not housed within the gill chamber.
- > (V) <u>MECHANISM</u> of the gill respiration:
- Formation of water-current in the gill chamber: The vibration of scaphognathite causes constant water-current.
- Entry of water-current in to gill chamber: Water enters the gill chamber along the postero-ventral margins of the carapace.
- Course of water-current inside the gill chamber:

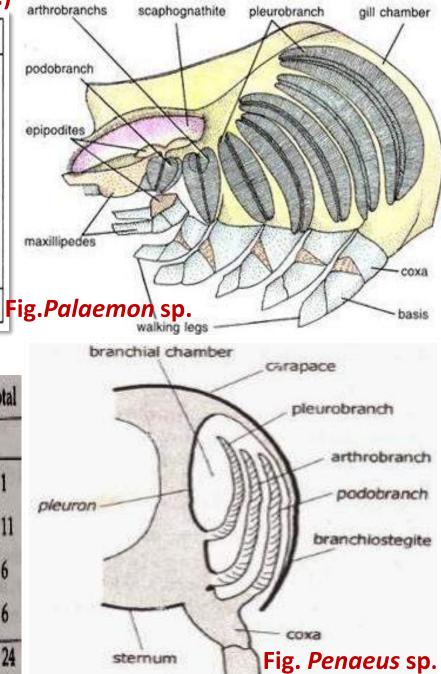
Water flows over the gills, epipodites and antero-dorsal depression of gill chamber.

- Exit of water current from gill chamber:
 Water expelled out at the anterior end of the gill chamber.
- Types of respiratory surfaces: Highly vascularized surfaces of gill plates, epipodites and branchiostegites.
- Respiratory gas exchange:

The oxygen of the water diffuses into the blood and carbon dioxide diffuses into the water current.

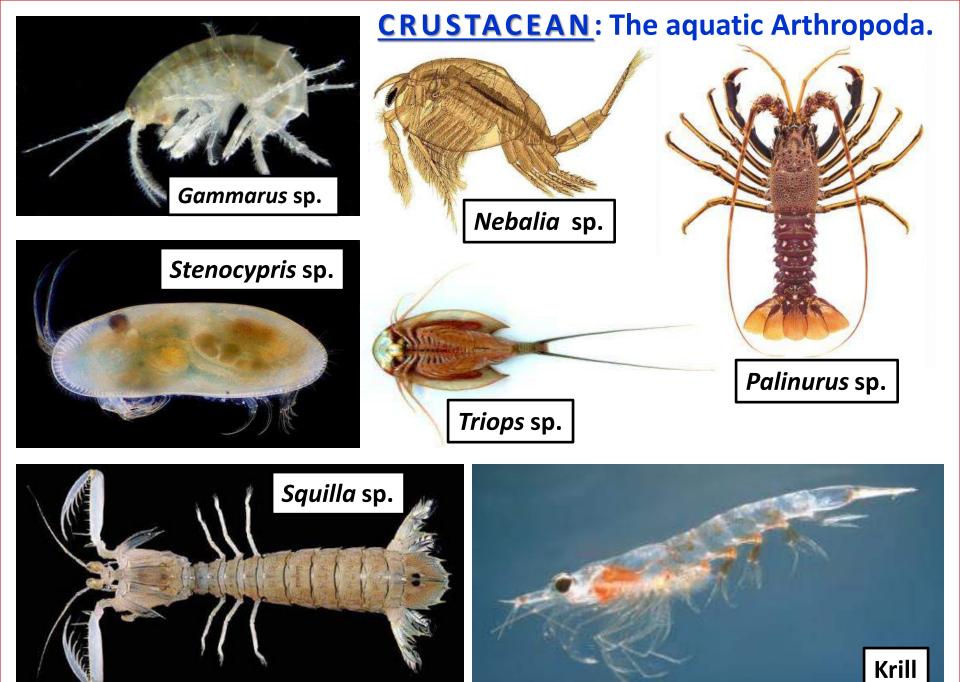
- (VI) <u>TYPES</u> of the gills in Crustacea:
- A. Based on the shape of the lamellae, the gills are of 3 types:
- ✓ 1.<u>Phyllobranchiate gill</u>:
- The lamellae of the gills are flat, broad leaf-like and are arranged in two rows.
- Found in crab and prawn (*Palaemon* sp.).
- ✓ 2.Trichobranchiate gill:
- The gill filaments are tubular.
- Consists of a central axis with numerous lateral filaments.
- Found in crayfish Trie
 (Astacus sp.), rock lobster etc.
- ✓ 3.<u>Dendrobranchiate gill</u>:
- The leaf-like lamellae are divided into fine branched filaments.
- Found in *Penaeus* sp.

Dendrobranchiate gill: Entire view & Transverse section


- **B.** Based on the mode of attachment, gills are of 3 types:
- ✓ 1. Podobranch or foot gill:
- Podobranchs are attached with the <u>coxopodite</u> of the thoracic appendage.
- In Palaemon sp., the 1 podobranch attached to the 2nd maxillipede.
- In *Penaeus* sp. the **1** pair podobranch attached to the 2nd pair of maxillipedes.
- ✓ 2. <u>Arthrobranch or joint gill:</u>
- Arthrobranchs are attached with the <u>arthroidal membrane</u> of the thoracic appendage.
- In *Palaemon* sp., 2 arthrobranchs attached to the arthroidal membrane of 3rd maxillipede.
- In *Penaeus* sp., 11 pairs arthrobranchs attached from 2nd maxillipede to 3rd walking legs and a single arthrobranch attached with 4th walking leg.
- ✓ 3. <u>Pleurobranch or side gill or wall gill</u>:
- Pleurobranchs are attached with the <u>lateral side of the thoracic segment</u> having the limb.
- In Palaemon sp., 5 pleurobranchs attached to the lateral side of the thoracic segments bearing 5 walking legs.
- In *Penaeus* sp., 6 pairs of pleurobranchs attached tothe last 6 pairs of thoracic appendages.

Branchial formula of Prawn (Palaemon sp.)

Appendages		Podobranchs	Arthrobranchs	Pleurobranchs	Epipodites	Total	
I	Maxilliped	-	-	—	1	1	
Π	Maxilliped	1	-	-	1	2	
ш	Maxilliped	-	2	-	1	3	
I	Walking leg	-	-	1	-	1	
II	Walking leg	-	-	1		1	
Ш	Walking leg	-	-	1	-	1	
IV	Walking leg	<u> </u>	-	1	-	1	
V	Walking leg	-	-	1	-	1	
	Total	1	2	5	3	11	

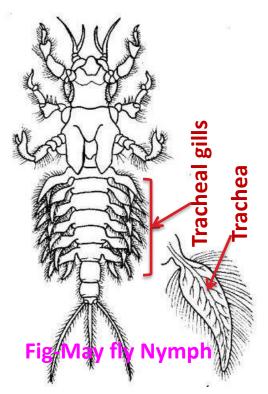

Branchial formula of Prawn (Penaeus sp.)

Type of branchiae on one side of the thorax	Thoracic segment					Total			
one side of the morax	I	II	Ш	IV	V	VI	VII	VIII	195
Podobranchiae	0	1	0	0	0	0	0	0	1
Arthrobranchiae	0	2	2	2	2	2	1	0	11
Pleurobranchiae	0	0	1	1	1	1	1	1	6
Epipodites	1	1	1	1	1	1	0	0	6
Total	1	4	4	4	4	4	2	1	24

(VII) MODIFICATION of the gills in aquatic Arthropoda:

- Crustacean gills are variously modified.
- Gills are broad <u>epipodites</u> of the thoracic appendages, e.g. *Nebalia* sp. (Class: Malacostraca).
- ➢ Gills are plate-like, e.g. Gammarus sp. (Class: Malacostraca).
- ➢ Gills are <u>flattened</u>, e.g. *Palinurus* sp. (Class: Malacostraca).
- Gills are tufted podobranchs, with no carapace, e.g. krill (Class: Malacostraca).
- ➢ Gills are the row of small <u>branchial lamellae</u>, e.g. Stenocypris sp. (Class: Ostracoda).
- Gills are leaf-like pleopods, e.g. *Triops* sp. (Class: Branchiopoda).
- ➢ Gills are <u>abdominal</u> in position, e.g. Squilla sp. (Class: Malacostraca).

2. TRACHEAL GILLS: (Gill like structure)

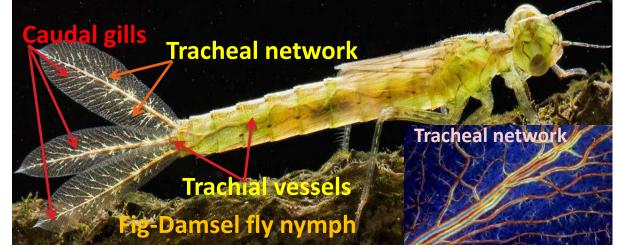

✓ Occurrence:

- Developed in many aquatic insect larvae and nymphs.
- Lamellate (leaf like) tracheal gill in May fly nymph and Damsel fly nymph.
- Filamentous tracheal gill in stone fly and caddis fly larvae.
- ✓ Structure:
- A network of tracheoles covered by a very thin cuticle.
- It is composed of a series of simple, divided and

thin external integumental evaginations.


- They are called plates or filaments covered by a very thin cuticle.
- The filaments are richly supplied with tracheae and very small blood cavities.
- They are attached to the wall of the abdominal or thoracic segments.
- ✓ Function:
- Diffusion of dissolved O₂ from the water into the body

3. <u>BLOOD GILLS</u>: Gill like structure with no tracheal system.


Occurrence:

- In certain insect larvae of Diptera and Trichoptera.
- Ventral & anal gills of blood worm (Diptera).
- Anal gill of black fly larvae (Diptera)
- Structure:
- They are thin walled fimbriated blood filled evaginations of integument.
- Tracheae are very poorly developed or totally absent.

> Function:

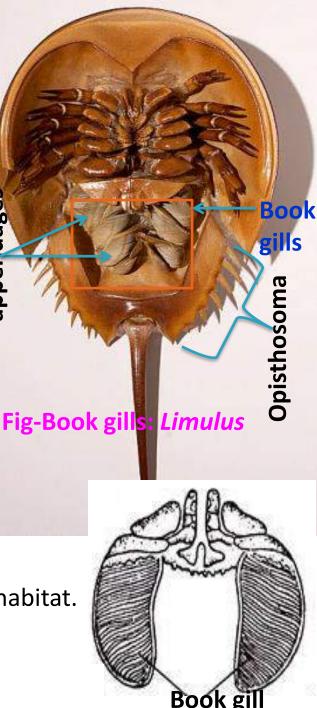
i. The absorption of water and inorganic ions. ii. No value as organs of respiration.

CAUDAL GILL:

- Found in Damselfly nymphs.
- Located at abdominal end.
- Three gills are tracheated.
- Absorb O₂ from the water and carry to the tissues.

4. **<u>RECTAL GILLS</u>**: Breathing through anus.

Occurrence:

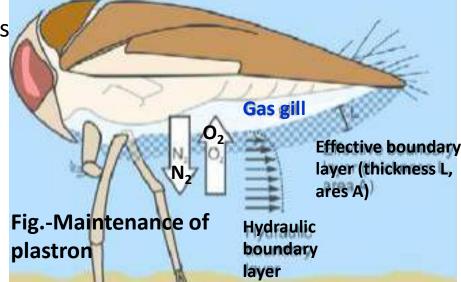

- The nymphs of several aquatic insects (Order:Odonata).
- Dragon fly nymph bears rectal gills.
- Rectum of dragon fly nymph is modified into a **branchial basket**.
- Structure:
- Gills are located in the inner lining of the rectum.
- Rectal wall is richly supplied with tracheal network.
- The rectal wall is contractile.
- The contractions of abdominal muscles maintains water circulation within rectum
- **Function:**
- Aquatic respiration in oxygen deficient habitat.
- Doubles the water-jet propulsion mechanism for escaping predator.

5. BOOK GILLS:

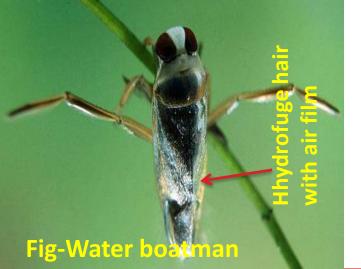
Occurrence:

- Book gills (5 pairs) are found in marine arthropod *Limulus* sp. (Horseshoe crabs).
- Structure:
- They are the flap-like appendages.
- Associated with 9th to 13th abdominal segments Formed by the evagination of the posterior borders of the opisthosomal appendages.
- Each gill contains nearly 150 lamellae.
- Lamellae are vascularized, thin & membranous
- Lamellae are arranged like the leaves of a book.
- Movement of appendages drives blood circulation the lamellae & water circulation over the lamellae
- **Function:**
- Lamellae of the gills helps in gas exchange in aquatic habitat.
- They helps in osmoregulation.

ppendag


6. <u>PLASTRON</u>: Air film trapped within a plastron operates as a physical gill.

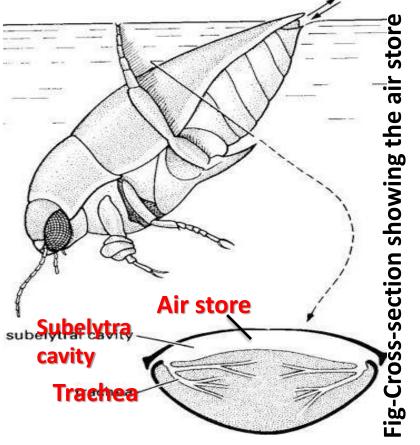
Occurrence:


Submerged arthropods, like diving insects (Riffle beetles, water boatman etc.)

Structure:

- Plastron is a very thin layer of air held firmly in place by tiny hydrofuge hairs.
- Air is held in a series of cuticular grooves by hydrofuge hairs.

- The spiracles open directly to the thin layer of air.
- Hydrofuge hairs are water-repellent wax coated, epicuticular structures on the body of aquatic insects.


Functional mechanism:

- Plastron is actually a modified air storage chamber.
- The partial pressure deficit is created as the insect consume O_2 from the plastron.
- The pressure deficit is corrected by the diffusion of dissolved O_2 into the plastron.
- The volume of the air does not change.

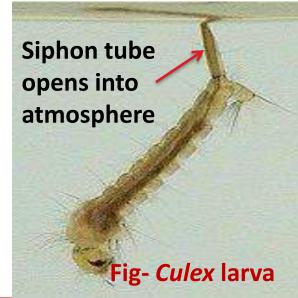
7.<u>AIR BUBBLES</u>: ("physical gill") Bubble breathing.

✓ Occurrence:

- In some aquatic insects, for example diving beetles.
- Functional mechanism:
- During the diving beneath the water-surface insects carry air bubbles under their wing covers (elytra).

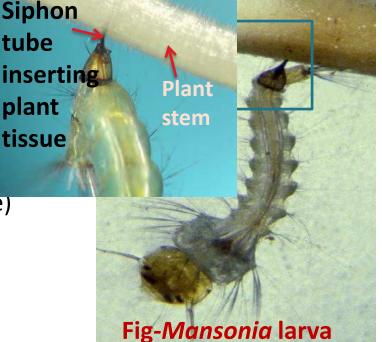
- At submerged condition the bubbles supply air to the spiracles.
- They protects the spiracles from the water.
 - The O₂ of the bubble can be refilled by the diffusion from the water.
 - They provides short-term oxygen supply.
 - Insect must return to the water-surface when the bubble becomes too small.

8. BREATHING TUBE: (Respiratory Siphon) Siphon


✓ Occurrence:

 i) Some underwater insects get O₂ by inserting the siphon tubes into the aerenchyma tissues of aquatic plants.

<u>Ex.</u>:-*Mansonia & Coquillettidia* (Mosquito larvae) (mosquitoes).


- ii) Many under water insects get air from the atmosphere through siphon tubes.
 - **Ex.:** Mosquito larvae, water scorpions (*Nepa* sp.),

rat-tailed maggots (syrphid fly larvae).

Structure:

- Siphon tube is an extension of the posterior spiracles.
- Opening end of the siphon is guarded by a ring of hairs with a waterproof coating.
- The ring of hairs break the surface tension and keep an open airway.
- When insect dives, hairs closes the siphon-opening.
 ✓ Function:
- Helps in aerial breathing in aquatic condition.

9. CUTANEOUS RESPIRATION:

- The integument is very thin over the gill-like structure (tracheal gill, anal gill etc.)
- They assists simple **diffusion of respiratory gases**.
- **Example:** In many aquatic insects the surfaces of the.
- □ 10. LINING OF BRANCHIOSTEGITES:
- The lateral extension of carapace is called gill cover branchiostegite.
- Inner lining of the branchiostegite is thin, membranous & richly vascularized.
- The vascularized lining is in direct contact with fresh water current.
- It acts as a surface of respiratory gas exchange.
- **Example:** In some crustaceans (e.g. *Palaemon* sp.).

□ 11. <u>EPIPODITES</u>:

- Epipodites (3 pairs in *Palaemon*) are located in the anterior part of each gillchamber.
- They are the evaginations of integument of coxae of the maxillipedes.
- They are thin, leaflike, membranous and highly vascularized.
- They are in contact with fresh water.
- The vascularized surfaces are respiratory in function.
- Example: In some crustaceans (e.g. Palaemon sp.).

✤ <u>A SHORT SUMMARY</u>: Respiration in aquatic insects.

1. Closed tracheal system:--

- In some aquatic and many endoparasitic larvae spiracles are absent.
- The tracheal network beneath the integument allow gas exchange.

✓ Gills like structures:

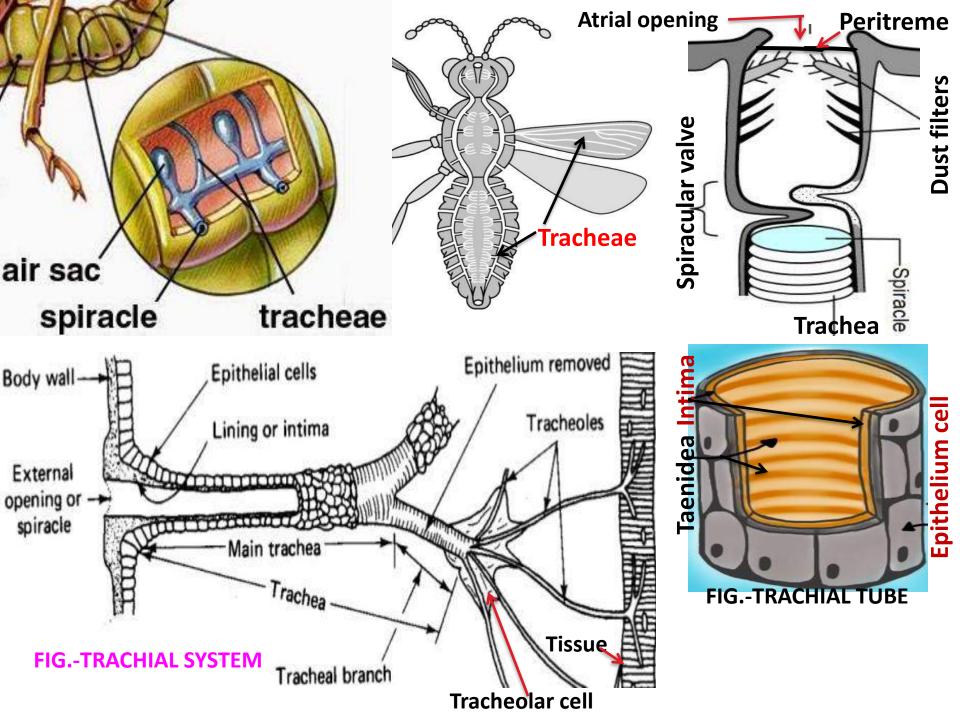
- They are tracheated thin outgrowth of the body wall with no spiracles.
- Tracheal gill—May fly nymph (lamellate gills), Damsel fly nymph (filamentous gills).
- Rectal gills—Dragon fly nymph.
- Blood gill—Blood worm (Chironomus larvae).
- Anal gills— Crane fly larva.

> 2. Open tracheal system:--

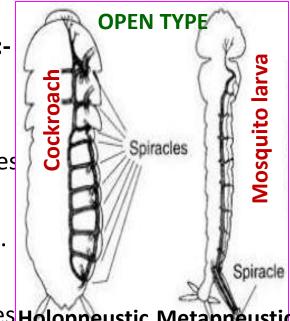
 In some aquatic air-breathing insects, tracheal system opens through the special structures.

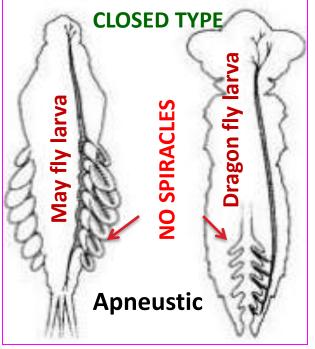
✓ Special structures:

- They provide air for air-breathing aquatic insects.
- Respiratory siphon Mosquito larvae.
- Breathing tube Water scorpion.
- Air bubble Diving beetles.
- Plastron Riffle beetles.


*** DEVICES OF <u>AERIAL</u> RESPIRATION**:

1. <u>T R A C H E A</u>:--


The chitin-lined tubular organ of aerial respiration.

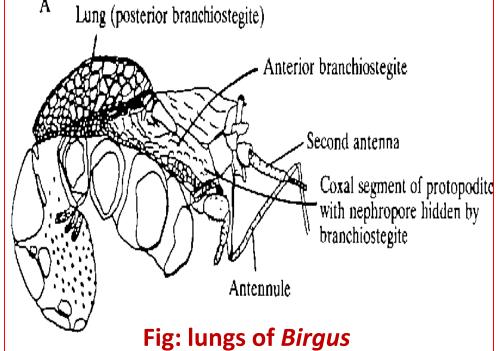

- Occurrance: Almost all land living arthropods like insects, centipedes, millipedes and many arachnids.
- Types : There are 2 types of trachae---
- i. Ventilation trachea: Collapses after the exhalation of air.
- **ii. Diffused trachea:** Rigid, after the exhalation does not collapse.
- Origin: The tracheae originate as the invagination of the ectoderm.
- Structure: The basic insect-respiratory system consists of----
- (i) Cells of tracheal tube: The tube-walls are made up of polygonal cells.
- (ii) Layer of tubular wall: a. intima (inner lining) b. epithelial cells (middle) and c. basal lamina (external).
- (iii) **Taenidea:** Spiral cuticular ridges of tracheal intima. Prevents tracheal collapse.
- (iv) **Tracheal cuticle:** Like surface cuticle but without the cement & wax layer.
- (v) Spiracle or stigmata: The external small opening of the tracheae.
- (vi) Location of spiracles: Along the sides of the body.

- (vii) Atrium: A chamber where spiracle opens.
- (viii) **Peritreme:** A plate of small, distinct sclerite on which the spiracle is placed.
- (ix) **Spiracular lids**: Two lids for opening and closing.
- (x) **Peristigmatic glands**: Secretion prevents wetting of the spiracles .
- (xi) Filtering apparatus: Composed of bundles of setae or a sieve-like membrane.
 Eliminate foreign particles and located within the chamber.
- (xii) Air-sacs: Thin walled-collapsable dilated parts of tracheae. Acts as air reservoirs, sound resonator and heat insulators.
- (xiii) Tracheoles: Fine (diameter:1µ), blind ended branches of tracheae with no taenidea. Reaches every respiring cells for gaseous exchange.
- (xiv) **Tracheoler end-fluid:** At rest it is filled with fluid. Serve to reduce water-loss.
- (xv) Tracheolar cell: Tracheal end cell that forms and encloses the tracheoles.

- Classification of the tracheal system: On the basis of the number and distribution of the <u>functional spiracles</u>:-
- ✓ (i) Polypneustic: 8 or more pairs of functional spiracles.
 Subdivisions of the polypneustic trecheal system:
- Holopneustic: 2 pairs thoracic, 8 pairs abdominal spiracles
 <u>Ex.</u>: dragonflies grasshoppers, cockroaches, fleas.
- Peripneustic: 1 pair thoracic, 8 pairs abdominal spiracles.
 <u>Ex.</u>: caterpillars and many endopterygote larvae.
- Hemipneustic: 1 pair thoracic, 7 pairs abdominal spiracles Holopneustic Metapneustic
- (ii) Oligopneustic: 1 or 2 pairs of functional spiracles.
 Subdivisions of the oligopneustic trecheal system:
- Amphipneustic: 1 pair thoracic, 1 pair post-abdominal spiracles. <u>Ex.</u>: House fly larva.
- Metapneustic:1 pair post abdominal spiracles present.
 <u>Ex.</u>: Mosquito larva.
- Propneustic: 1 pair thoracic spiracles is functional.
 <u>Ex.</u>: some pupae of Diptera.
- ✓ (iii) Apneustic: No functional spiracle.
 <u>Ex.</u>: Aquatic insect larvae

Mechanism of tracheal respiration:

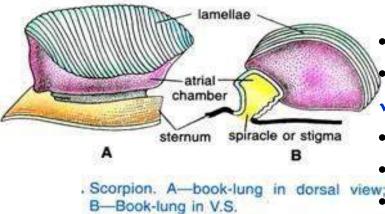
- The tracheal respiration involves **ventilation** and **diffusion** of gases.
- 1. <u>Ventilation</u> (air tube transport): Convective movements of gases through the tracheal system.
- Air enters the spiracle and passes through the length of the tracheae to the tracheoles and into the target cells.
- The respiratory gases moves along a concentration gradient.
- Inspiration : The net movement of O₂ in the tracheal system is inwards.
- Expiration: The net movement of CO₂ in the tracheal system is outwards
- ✓ 2. <u>Diffusion</u> (tissue diffusion):
- Networks of tracheoles are the major site of diffusion.
- O₂ diffuses into the tissues from the tracheal lumen.
- CO₂ diffuses out from tissue to the tracheal lumen.
- Fluid in the tracheolar ends regulates the volume of air that contacts with the cells.
- At rest, the tracheolar ends are filled with a fluid.
- During cellular activity the fluid pulls back, exposes the cell membrane to the air.
- The tracheolar fluid is absorbed during respiration.


lient. stem is inwards. stem is outwards. Body cell (with no capillary)	Tracheolar fluid
Air sac Trachea	Body wall

Factors responsible for respiratory movement:

- Alternate contraction and expansion of the body: Air is drawn in and forced out through the spiracles.
- Reduction of hemocoelomic pressure: Responsible for brief-opening of spiracles.
- Spiracle-valves: Controls water loss.
- High CO₂ concentration: Regulate the opening of the spiracles.
- Temperature: At low temperatures, the spiracles are closed but open occasionally. At higher temperatures open and close periodically.
- Functions of trachea:
- i. Provide O₂ to the tissues, eliminate CO₂ ii. Act as connective tissue.
 iii. Maintain body temperature. iv. Sound production.
- Modifications of the tracheae:
- Absence of tracheae: Found in *Collembola* sp., respiration is cutaneous.
- Single spiracle connected to the dorsal trunk: Found in mosquito larvae.
- Spiracle open into air chamber: Found in the Subphylum Myriapoda.
- Spiracle with sieve plate: Found in dipterans, coleopterans and lepidopterans.
- Branched tracheae: Found in the Class Diplopoda (Millipedes).
- Head with only 2 tracheae: Found in the Class Symphyla (Garden centipedes)

2. <u>LUNGS</u>: Modified branchial chamber for the aerial gas exchange.


- > Occurrence:
- Terrestrial hermit crabs (Crustacea)
 Birgus sp., Coenobita sp.
- > Type & Structure:
- ✓ i. Branchiostegal lungs (Birgus sp.):
- The branchial chambers are highly enlarged.
- The upper part of the branchial chamber form a separate chamber.
- Inner lining of the branchial chamber forms numerous vascular projections.

- The tufts of vascular projections helps in respiration.
- The changes in volume of the branchial chamber maintains its air flow.
- ✓ ii. Abdominal lungs (Coenobita sp.):
 Developed from the highly vascularized, very thin and intensely folded dorsal integument.
- > Function:
- Perform aerial respiration.

3. BOOK-LUNGS:

- Occurrence: Main respiratory organ of spiders & scorpions. R^A Structure :Typical book–lung of the Scorpion.
- They are the modified abdominal appendages.
- They are blind sac-like cavity.
- Formed by the invagination of the body wall.
- Inner lining of the sac contain numerous folds.
- Lamellae (folds) are like the leaves of a book.
- Outer side of the lamellae contain ridges & bristles.
- It opens to the exterior by a stigma.
- The cavity is divided into 2 chambers:-
- i. Atrial chamber: A proximal, smaller chamber.
- It's roof is perforated by slit-like openings.

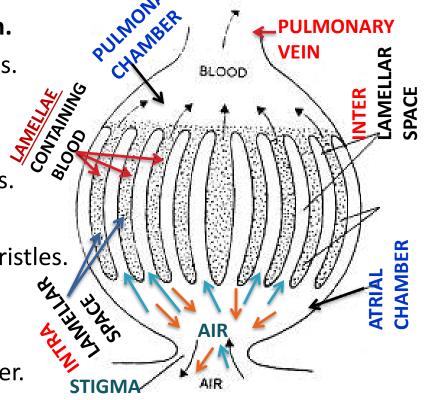
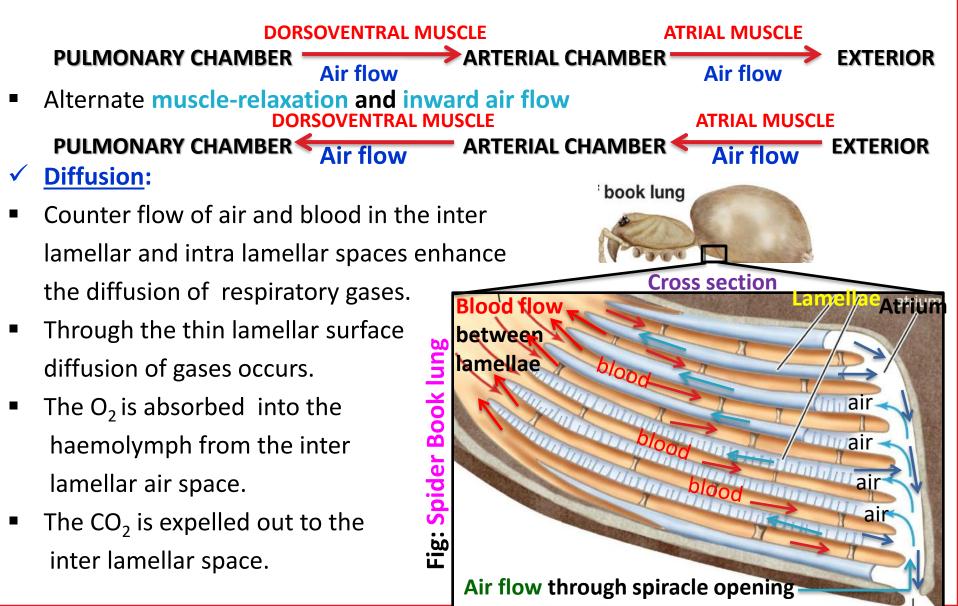
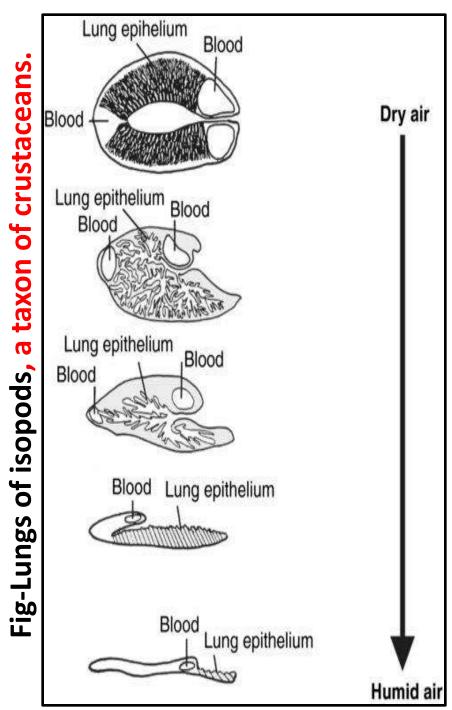



FIG.- SCORPION BOOK LUNG: VERTICAL SECTION

- It is dorsoventrally compressed air space.
- It opens to the exterior through a stigma.
- ii. Pulmonary chamber: A distal, larger chamber.
- It holds a series of hollow parallel lamellae.
- Intra lamellar space is filled with haemolymph. Inter lamellar space is filled with air.

- Respiratory Mechanism of the Book-lungs:
- ✓ <u>Ventilation</u>:
- Alternate muscle-contraction and outward air flow


4. <u>PSEUDOTRACHEAE OR LUNGS</u>:

Occurrence:

 In Oniscus sp. (wood lice), the only land living Crustacea.

> Structure:

- Pseudotracheae possess numerous minute tube-like structures.
- Associated with the abdominal appendages.
- lungs and tracheae develop in the external branches (exopodites).
- The respiratory structures develop more invaginations and tubules.
- o <u>Lungs of the Isopods</u>: (In Oniscus sp.)
- From dry to humid environments the size of the lungs and the type of embedding into the body is reduced.
- > Function:
- Help in aerial respiration.

REFERENCES

- A text book on Insects Structure and Function by R.F. Chapman
- Insect an Introduction by K.N. Raghumoorthi,
 V. Balasubramin.
- ✓ Wikipedia.
- ✓ http://www.biologydiscussion.com/invertebrate-zoology/arthropods/forms-of-respiration

"Stay home Stay safe"

