
4 UNIT FOUR: Transportation and Assignment problems

4.1 Objectives

By the end of this unit you will be able to:

• formulate special linear programming problems using the transportation model.

• define a balanced transportation problem

• develop an initial solution of a transportation problem using the Northwest Corner

Rule

• use the Stepping Stone method to find an optimal solution of a transportation problem

• formulate special linear programming problems using the assignment model

• solve assignment problems with the Hungarian method.

4.2 Introduction

In this unit we extend the theory of linear programming to two special linear programming

problems, the Transportation and Assignment Problems. Both of these problems can

be solved by the simplex algorithm, but the process would result in very large simplex

tableaux and numerous simplex iterations.

Because of the special characteristics of each problem, however, alternative solution methods

requiring significantly less mathematical manipulation have been developed.

4.3 The Transportation problem

The general transportation problem is concerned with determining an optimal strategy for

distributing a commodity from a group of supply centres,such as factories, called sources,

to various receiving centers, such as warehouses, called destinations, in such a way as to

minimise total distribution costs.

Each source is able to supply a fixed number of units of the product, usually called the

capacity or availability, and each destination has a fixed demand, often called the require-

ment.
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Transportation models can also be used when a firm is trying to decide where to locate a

new facility. Good financial decisions concerning facility location also attempt to minimize

total transportation and production costs for the entire system.

4.3.1 Setting up a Transportation problem

To illustrate how to set up a transportation problem we consider the following example;

Example 4.1

A concrete company transports concrete from three plants, 1, 2 and 3, to three construction

sites, A, B and C.

The plants are able to supply the following numbers of tons per week:

Plant Supply (capacity)

1 300

2 300

3 100

The requirements of the sites, in number of tons per week, are:

Construction site Demand (requirement)

A 200

B 200

C 300

The cost of transporting 1 ton of concrete from each plant to each site is shown in the figure

8 in Emalangeni per ton.

For computational purposes it is convenient to put all the above information into a table, as

in the simplex method. In this table each row represents a source and each column represents

a destination.

Sites
PPPPPPPPPFrom

To
A B C

Supply (Avail-

ability)

1 4 3 8 300

Plants 2 7 5 9 300

3 4 5 5 100
Demand (re-

quirement)
200 200 300
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Figure 8: Constructing a transportation problem

4.3.2 Mathematical model of a transportation problem

Before we discuss the solution of transportation problems we will introduce the notation

used to describe the transportation problem and show that it can be formulated as a linear

programming problem.

We use the following notation;

xij = the number of units to be distributed from

source i to destination j

(i = 1, 2, . . . ,m; j = 1, 2, . . . , n);

si = supply from source i;

dj = demand at destination j;

cij = cost per unit distributed from

source i to destination j

With respect to Example 4.1 the decision variables xij are the numbers of tons transported

from plant i (where i = 1, 2, 3) to each site j (where j = A, B, C)

A basic assumption is that the distribution costs of units from source i to destination j is

directly proportional to the number of units distributed. A typical cost and requirements

table has the form shown on Table 4.

Let Z be total distribution costs from all the m sources to the n destinations. In example

4.1 each term in the objective function Z represents the total cost of tonnage transported

on one route. For example, in the route 2 −→ C, the term in 9x2C , that is:

(Cost per ton = 9) × (number of tons transported = x2C)
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Destination

1 2 . . . n Supply

1 c11 c12 . . . c1n s1
2 c21 c22 . . . c2n s2

Source
...

...
... . . .

...
...

m cm1 cm2 . . . cmn sm

Demand d1 d2 . . . dn

Table 4: Cost and requirements table

Hence the objective function is:

Z = 4x1A + 3x1B + 8x1C

+ 7x2A + 5x2B + 9x2C

+ 4x3A + 5x3B + 5x3C

Notice that in this problem the total supply is 300 + 300 + 200 = 700 and the total demand

is 200 + 200 + 300 = 700. Thus

Total supply = total demand.

In mathematical form this expressed as

m∑

i=1

si =
n∑

j=1

dj (47)

This is called a balanced problem . In this unit our discussion shall be restricted to the

balanced problems.

In a balanced problem all the products that can be supplied are used to meet the demand.

There are no slacks and so all constraints are equalities rather than inequalities as was the

case in the previous unit.

The formulation of this problem as a linear programming problem is presented as

Minimise Z =
m∑

i=1

n∑

j=1

cij xij , (48)

subject to

n∑

j=1

xij = si, for i = 1, 2, . . . ,m (49)

n∑

i=1

xij = dj , for j = 1, 2, . . . , n (50)
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and

xij ≥ 0, for all i and j.

Any linear programming problem that fits this special formulation is of the transportation

type, regardless of its physical context. For many applications, the supply and demand

quantities in the model will have integer values and implementation will require that the

distribution quantities also be integers. Fortunately, the unit coefficients of the unknown

variables in the constraints guarantee an optimal solution with only integer values.

4.3.3 Initial solution - Northwest Corner Rule

The initial basic feasible solution can be obtained by using one of several methods. We

will consider only the North West corner rule of developing an initial solution. Other

methods can be found in standard texts on linear programming.

The procedure for constructing an initial basic feasible solution selects the basic variables

one at a time. The North West corner rule begins with an allocation at the top left-hand

corner of the tableau and proceeds systematically along either a row or a column and make

allocations to subsequent cells until the bottom right-hand corner is reached, by which time

enough allocations will have been made to constitute an initial solution.

The procedure for constructing an initial solution using the North West Corner rule is as

follows:

NORTH WEST CORNER RULE

1. Start by selecting the cell in the most “North-West” corner of the table.

2. Assign the maximum amount to this cell that is allowable based on the require-

ments and the capacity constraints.

3. Exhaust the capacity from each row before moving down to another row.

4. Exhaust the requirement from each column before moving right to another col-

umn.

5. Check to make sure that the capacity and requirements are met.

Let us begin with an example dealing with Executive Furniture corporation, which manu-

factures office desks at three locations: D, E and F. The firm distributes the desks through

regional warehouses located in A, B and C (see the Network format diagram below)
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It is assumed that the production costs per desk are identical at each factory. The only

relevant costs are those of shipping from each source to each destination. The costs are

shown in Table 5

PPPPPPPPPFrom

To
A B C

D $5 $4 $3

E $8 $4 $3

F $9 $7 $5

Table 5: Transportation Costs per desk for Executive Furniture Corp.

We proceed to construct a transportation table and label its various components as show

in Table 6.

We can now use the Northwest corner rule to find an initial feasible solution to the problem.

We start in the upper left hand cell and allocate units to shipping routes as follows:
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PPPPPPPPPFrom

To
A B C Capacity

D 5 4 3

100

E 8 4 3

300

F 9 7 5

300

Requirements 300 200 200 700

Table 6: Transportation Table for Executive Furniture Corporation

1. Exhaust the supply (factory capacity) of each row before moving down to the next

row.

2. Exhaust the demand (warehouse) requirements of each column before moving to the

next column to the right.

3. Check that all supply and demand requirements are met.

The initial shipping assignments are given in Table 7

PPPPPPPPPFrom

To
A B C

Factory

Capacity

D 100 100

E 200 100 300

F 100 200 300

Warehouse

Requirements
300 200 200 700

Table 7: Initial Solution of the North West corner Rule

This initial solution can also be presented together with the costs per unit as shown in the

Table 8.

We can compute the cost of this shipping assignment as follows;

Therefore, the initial feasible solution for this problem is $4200.

Example 4.2

Consider a transportation problem in which the cost, supply and demand values are presented

in Table 10.

(a) Is this a balanced problem? Why?
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PPPPPPPPPFrom

To
A B C Capacity

D 5 4 3

100 100

E 8 4 3

200 100 300

F 9 7 5

100 200 300

Requirements 300 200 200 700

Table 8: Representing the initial feasible solution with costs

ROUTE UNITS PER UNIT TOTAL

FROM TO SHIPPED × COST ($) = COST ($)

D A 100 5 500

E A 200 8 1600

E B 100 4 400

F B 100 7 700

F C 200 5 1000

Total 4200

Table 9: Calculation of costs of initial shipping assignments

(b) Obtain the initial feasible solution using the North-West Corner rule.

Solution:

(a) We calculate the total supply and total demand.

Total supply = 14 + 10 + 15 + 13 = 52

Total demand = 10 + 15 + 12 + 15 = 52

Since the total supply is equal to the total demand we conclude that the problem is

balanced.

(b) The allocations according to the North-West corner rule are shown in Table 11 The

initial feasible solution is

Total Cost = 10 · 10 + 4 · 30 + 10 · 15 + 1 · 30 + 12 · 20 + 2 · 20 + 13 · 45 = $1265

Note that this is not necessarily equal to the optimal solution.
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Destination

1 2 3 4 Supply

1 10 30 25 15 14

Source 2 20 15 20 10 10

3 10 30 20 20 15

4 30 40 35 45 13

Demand 10 15 12 15

Table 10: Supply and Demand values for Transportation problem

1 2 3 4 Supply

1 10 4 14

2 10 10

3 1 12 2 15

4 13 13

Demand 10 15 12 15

Table 11: Initial feasible solution

4.4 Exercises 4.1: Northwest Corner rule

In each of the following problems check whether the solution is balanced or not then use

the North West Corner rule to find the basic feasible solution.

1.

PPPPPPPPPFROM

TO
1 2 3 Supply

1 3 2 0 45

2 1 5 0 60

3 5 4 0 35

Demand 50 60 30

2.

PPPPPPPPPFROM

TO
1 2 3 Supply

1 5 4 3 100

2 8 4 3 300

3 9 7 5 300

Demand 300 200 200
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3.

PPPPPPPPPFROM

TO
1 2 3 4 Supply

A 12 13 4 6 500

B 6 4 10 11 700

C 10 9 12 4 800

Demand 400 900 200 500

4.

PPPPPPPPPFROM

TO
1 2 3 4 Supply

1 10 30 25 15 14

2 20 15 20 10 10

3 10 30 20 20 15

4 30 40 35 45 13

Demand 10 15 12 15

4.4.1 Optimality test - the Stepping Stone method

The next step is to determine whether the current allocation at any stage of the solution

process is optimal. We will present one of the methods used to determine optimality of and

improve a current solution. The method derives its name from the analogy of crossing a

pond using stepping stones. The occupied cells are analogous to the stepping stones, which

are used in making certain movements in this method.

The five steps of the Stepping-Stone Method are as follows:
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STEPPING-STONE METHOD

1. Select an unused square to be evaluated.

2. Beginning at this square, trace a closed path back to the original square via

squares that are currently being used (only horizontal or vertical moves allowed).

You can only change directions at occupied cells!.

3. Beginning with a plus (+) sign at the unused square, place alternative minus (-)

signs and plus signs on each corner square of the closed path just traced.

4. Calculate an improvement index, Iij by adding together the unit cost figures

found in each square containing a plus sign and then subtracting the unit costs

in each square containing a minus sign.

5. Repeat steps 1 to 4 until an improvement index has been calculated for all unused

squares.

• If all indices computed are greater than or equal to zero, an optimal solution

has been reached.

• If not, it is possible to improve the current solution and decrease total ship-

ping costs.

4.4.2 The optimality criterion

If all the cost index values obtained for all the currently unoccupied cells are nonnegative,

then the current solution is optimal. If there are negative values the solution has to be

improved. This means that an allocation is made to one of the empty cells (unused routes)

and the necessary adjustments in the supply and demand effected accordingly.

To see how the Stepping-Stone method works we apply these steps to the Furniture Corpo-

ration example to evaluate the shipping routes.

Steps 1-3 Beginning with the D-B route, we first trace a closed path using only currently oc-

cupied squared (see Table 12) and then place alternate plus signs and minus signs in

the corners of this path.

Step 4 An improvement index Iij for the D-B route in now computed by adding unit costs

in squares with plus signs and subtracting costs in squares with minus signs. Thus

IDB = +4− 5 + 8− 4 = +3

This means that for every desk shipped via the D-B route, total transportation costs

will increase by $3 over their current level.
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PPPPPPPPPFrom

To
A B C Capacity

D 5 Start 4 3

100 - ← + 100

E ↓ 8 ↑ 4 3

200 + → - 100 300

F 9 7 5

100 200 300

Requirements 300 200 200 700

Table 12: Evaluating the D-B route

Step 5 Next we consider the D-C unused route. The closed path we use is (see Table 13)

+DC −DA+ EA− EB + FB − FC

The D-C improvement index is

IDC = +3− 5 + 8− 4 + 7− 5 = +4

PPPPPPPPPFrom

To
A B C Capacity

D 5 4 Start 3

100 - ← ←− ←− ← + 100

E ↓ 8 4 ↑ 3

200 + → - 100 ↑ 300

9 ↓ 7 ↑ 5

F + −→ → -

100 200 300

Requirements 300 200 200 700

Table 13: Evaluating the D-C route

The other two routes may be evaluated in a similar fashion

E-C route: closed path = +EC - EB + FB - FC

IEC = +3− 4 + 7− 5 = +1

FA route: closed path = +FA - FB + EB - EA

IFA = +9− 7 + 4− 8 = −2

Because the IFA index is negative, a cost saving may be attained by making use of the

FA route i.e the FA cell can be improved. The Stepping-Stone path used to evaluate

the route FA is shown in Table 14
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PPPPPPPPPFrom

To
A B C Capacity

D 5 4 3

100 100

E 8 4 3

200 - ← + 100 300

F ↓ 9 ↑ 7 5

Start + → - 100 200 300

Requirements 300 200 200 700

Table 14: Stepping-Stone Path used to evaluate FA route

The next step, then is to ship the maximum allowable number of units on the new route (FA

route). What is the maximum quantity that can be shipped on the money-saving route?

The quantity is found by referring to the closed path of plus signs and minus signs drawn

for the route and selecting the smallest number found in those squares containing minus

signs. To obtain a new solution, that number is added to all squares on the closed path

with plus signs and subtracted from all squares on the path assigned minus signs. All other

squares are left unchanged. The new solution is shown in Table 15.

PPPPPPPPPFrom

To
A B C Capacity

D 5 4 3

100 100

E 8 4 3

100 200 300

F 9 7 5

100 200 300

Requirements 300 200 200 700

Table 15: Improved solution: Second solution

The shipping cost for this new solution is

100 · 5 + 100 · 8 + 200 · 4 + 100 · 9 + 200 · 4 = $4000

This solution may or may not be optimal. To determine whether further improvement is

possible, we return to the first five steps to test each square that is now unused. The four

improvement indices - each representing an available shipping route are as follows:

D to B = IDB = 4− 5 + 8− 4 = +$3

(Closed path : +DB −DA+ EA− EB)
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D to C = IDC = 3− 5 + 9− 5 = +$2

(Closed path : +DC −DA+ FA− FC)

E to C = IEC = 3− 8 + 9− 5 = −$1

(Closed path : +EC − EA+ FA− FC)

F to B = IFB = 7− 4 + 8− 9 = +$2

(Closed path : +FB − EB + EA− FA)

Hence, an improvement can be made by shipping the maximum allowable number of units

from E to C (see Table 16).

PPPPPPPPPFrom

To
A B C Capacity

D 5 4 3

100 100

E - 8 ← ← 4 ← + 3

100 ↓ 200 Start 300

F ↓ 9 7 ↑ 5

100 + → → → → → - 200 300

Requirements 300 200 200 700

Table 16: Path to evaluate the E-C route

The improved solution is shown in Table 17. The total cost for the third solution is

100 · 5 + 200 · 4 + 100 · 3 + 200 · 9 + 100 · 5 = $3900

To determine if the current solution is optimal we calculate the improvement indices - each

PPPPPPPPPFrom

To
A B C Capacity

D 5 4 3

100 100

E 8 4 3

200 100 300

F 9 7 5

200 100 300

Requirements 300 200 200 700

Table 17: Improved solution: Third solution

representing an available shipping route - as follows:

D to B = IDB = 4− 5 + 9− 5 + 3− 4 = +$2
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(Closed path: +DB −DA+ FA− FC + EC − EB)

D to C = IDC = 3− 5 + 9− 5 = +$2

(Closed path: +DC −DA+ FA− FC)

E to A = IEA = 8− 9 + 5− 3 = +$1

(Closed path: + EA− FA+ FC − EC)

F to B = IFB = 7− 5 + 3− 4 = +$1

(Closed path: + FB − FC + EC − EB)

Table 17 contains the optimal solution because each improvement index for the Table is

greater than or equal to zero.

4.5 Summary

In this section we discussed the formulation of transportation problems and their methods

of solution. We used the North West corner rule to obtain the initial feasible solution and

the Stepping-Stone method to find the optimal solution. We restricted focus to balanced

transportation problems where it is assumed that the total supply is equal to total demand.

4.6 Exercises 4.2: Transportation problems

1. A company has factories at A, B and C which supply warehouses at D, E and F.

Weekly factory capacities are 200, 160 and 90 units respectively. Weekly warehouse

requirements (demands) are 180, 120 and 150 units respectively. Unit shipping costs

(in Emalangeni) are as follows:

Factory D E F Capacity

A 16 20 12 200

B 14 8 18 160

C 26 24 16 90

Demand 180 120 150 450

Determine the optimum distribution for this company to minimize shipping costs.

[E5920]

2. A Timber company ships pine flooring to three building supply houses from its mills

in Bhunya, Mondi and Pigg’s Peak. Determine the best transportation schedule for

the data given below using the Northwest corner rule and the Stepping Stone method.

[E230]
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PPPPPPPPPFROM

TO Supply

House 1

Supply

House 2

Supply

House 3

Mill

Capacity (tons)

Bhunya 3 3 2 25

Mondi 4 2 3 40

Pigg’s Peak 3 2 3 30

Supply House

Demand (tons)
30 30 35 95

3. A trucking company has a contract to move 115 truckloads of sand per week between

three sand-washing plants W,X and Y, and three destinations, A,B and C. Cost and

volume information is given below. Compute the optimal transportation cost.

PPPPPPPPPFrom

To
Project A Project B Project C Supply

Plant W 5 10 10 35

Plant X 20 30 20 40

Plant Y 5 8 12 40

Demand 45 50 20

[C=1345]

4. In each of the following cases write down the North West corner solution and use the

Stepping Stone method to find the minimal cost.

(a)

PPPPPPPPPFROM

TO
D E F Capacity

A 8 6 9 20

B 6 3 8 30

C 10 7 9 70

Demand 90 20 10 120

[E970]

(b)

PPPPPPPPPFROM

TO
D E F Capacity

A 2 2 3 4

B 2 1 6 6

C 1 3 4 8

Demand 2 5 11 18

[E48]
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(c)

PPPPPPPPPFROM

TO
D E F Capacity

A 5 2 2 7

B 7 3 4 5

C 6 4 3 3

Demand 4 5 6
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4.7 Assignment Problem

The assignment problem refers to the class of linear programming problems that involve

determining the most efficient assignment of

• people to projects

• salespeople to territories

• contracts to bidders

• jobs to machines, etc.

The objective is most often to minimize total costs or total time of performing the tasks at

hand.

One important characteristic of assignment problems is that only one job or worker is

assigned to one machine or project. An example is the problem of a taxi company with

4 taxis and 4 passengers. Which taxi should collect which passenger in order to minimize

costs?

Each assignment problem has associated with it a table, or matrix. Generally, the rows

contain the objects or people we wish to assign, and the columns comprise the tasks or

things we want them assigned to. The numbers in the table are the costs associated with

each particular assignment.

An assignment problem can be viewed as a transportation problem in which

• the capacity from each source (or person to be assigned) is 1 and

• the demand at each destination (or job to be done) is 1.

As an illustration of the assignment problem, let us consider the case of a Fix-It-Shop,

which has just received three new rush projects to repair: (1) a radio, (2) a toaster oven,

and (3) a broken coffee table. Three repair persons, each with different talents and abilities,

are available to do the jobs. The owner of the shop estimates what it will cost in wages

to assign each of the workers to each of the three projects. The costs which are shown in

Table 18 differ because the owner believes that each worker will differ in speed and skill on

these quite varied jobs.

Table 19 summarizes all six assignment options. The table also shows that the least-cost

solution would be to assign Cooper to project 1, Brown to project 2, and Adams to project

3, at a total cost of $25.

The owner’s objective is to assign the three projects to the workers in a way that will result

in the lowest cost to the shop. Note that the assignment of people to projects must be on

a one-to-one basis; each project will be assigned exclusively to one worker only.
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PROJECT

PERSON 1 2 3

Adams $11 $14 $6

Brown 8 10 11

Cooper 9 12 7

Table 18: Repair costs of the Fix-It-Shop assignment problem

PROJECT ASSIGNMENT

1 2 3 LABOUR COSTS ($) TOTAL COSTS ($)

Adams Brown Cooper 11 + 10 +7 28

Adams Cooper Brown 11 + 12 +11 34

Brown Adams Cooper 8 + 14 + 7 29

Brown Cooper Adams 8 + 12 + 6 26

Cooper Adams Brown 9 + 14 + 11 34

Cooper Brown Adams 9 + 10 + 6 25

Table 19: Assignment alternatives and Costs of Fix-It-Shop assignment problem

Special algorithms exist to solve assignment problems. The most common is probably the

Hungarian solution method. The Hungarian method of assignment provides us with an

efficient means of finding the optimal solution without having to make a direct comparison

of every assignment option. It operates on a principle of matrix reduction, which means

that by subtracting and adding appropriate numbers in the cost table or matrix, we can

reduce the problem to a matrix of opportunity costs. Opportunity costs show the relative

penalties associated with assigning any person to a project as opposed to making the best

or least-cost assignment. We would like to make assignments such that the opportunity

cost for each assignment is zero.

The steps involved in the Hungarian method are outlined below.
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THE HUNGARIAN METHOD

1. Find the opportunity cost table by

(a) Subtracting the smallest number in each row of the original cost table or

matrix from every number in that row.

(b) Then subtracting the smallest number in each column of the table obtained

in part (a) from every number in that column.

2. Test the table resulting from step 1 to see whether an optimal assignment can be

made. The procedure is to draw the minimum number of vertical and horizontal

straight lines necessary to cover all zeros in the table. If the number of lines equals

either the number of rows or columns, an optimal assignment can be made. If

the number of lines is less than the number of rows or columns, we proceed to

step 3.

3. Revise the present opportunity cost table. This is done by subtracting the smallest

number not covered by a line from every other uncovered number. This same

smallest number is also added to any number(s) lying at the intersection of the

horizontal and vertical lines. We then return to step 2 and continue the cycle

until an optimal assignment is possible.

Let us now apply the three steps to the Fix-It-Shop assignment example.

The original cost table for the problem is given in Table 20

PROJECT

PERSON 1 2 3

Adams 11 14 6

Brown 8 10 11

Cooper 9 12 7

Table 20: Initial Table

PROJECT

PERSON 1 2 3

Adams 5 8 0

Brown 0 2 3

Cooper 2 5 0

Table 21: Row reduction (part a)

After the row reduction (Step 1 part a) we get the cost Table 21.

Taking the costs in Table 21 and subtracting the the smallest number in each column from

each number in that column results in the total opportunity costs given in Table 22. This

step is the column reduction of Step 1 part (b)

If we draw vertical and horizontal straight lines (Step 2) to cover all the zeros in Table 22

we get Table 23. Since the number of lines is less than the number of rows or columns an

optimal assignment cannot be made.

Since Table 23 doesn’t give an optimal solution we revise the table. This is accomplished

by subtracting the smallest number not covered by a line from all numbers not covered by
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PROJECT

PERSON 1 2 3

Adams 5 6 0

Brown 0 0 3

Cooper 2 3 0

Table 22: Column Reduction (Step 1 part b)

PROJECT

PERSON 1 2 3

Adams 5 6 0

Brown 0 0 3

Cooper 2 3 0

Table 23: Testing for an optimal solution

a straight line. This same smallest number is then added to every number (including zeros)

lying in the intersection on any two lines. The smallest uncovered number in Table 23 is 2,

so this value is subtracted from each of the four uncovered numbers. A 2 is also added to

the number that is covered by the intersecting horizontal and vertical lines. The results of

this step are shown in Table 24

To test now for an optimal assignment, we return to Step 2 and find the minimum number

of lines necessary to cover all zeros in the revised opportunity cost table. Because it requires

three lines to cover the zeros (see Table 25), an optimal assignment can be made.

PROJECT

PERSON 1 2 3

Adams 3 4 0

Brown 0 0 5

Cooper 0 1 0

Table 24: Revised opportunity cost

table

PROJECT

PERSON 1 2 3

Adams 3 4 0

Brown 0 0 5

Cooper 0 1 0

Table 25: Optimality test on the re-

vised table

Finally, we make the allocation. Note that only one assignment will be made from each row

or column. We use this fact to proceed to making the final allocation as follows:

(a) Find a row or column with only one zero cell.

(b) Make the assignment corresponding to that zero cell.

(c) Eliminate that row and column from the table.

(d) Continue until all the assignments have been made.
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For our Fix-It-Shop problem these steps are summarized in Table 26.

FIRST SECOND THIRD

ASSIGNMENT ASSIGNMENT ASSIGNMENT

1 2 3 1 2 3 1 2 3

Adams 3 4 0 Adams 3 4 0 Adams 3 4 0

Brown 0 0 5 Brown 0 0 5 Brown 0 0 5

Cooper 0 1 0 Cooper 0 1 0 Cooper 0 1 0

Table 26: Making the final assignment

To interpret the table we recall that our objective was to minimize costs, there is only one

assignment that Adams can go to where the opportunity costs are $0. That is to assign

Adams Project 3. If Adams gets assigned to Project 3, then there is only one project left

where the opportunity cost is $0 for Cooper. Therefore Cooper gets assigned to Project 1.

This leaves Brown being assigned to Project 2, where the opportunity costs are $0.

The optimal allocation is to assign Adams to Project 3, Brown to Project 2, and Cooper

to Project 1. The total labour cost of this assignment are computed from the original cost

table (see Table 18). They are as follows:

ASSIGNMENT COST ($)

Adams to Project 3 6

Brown to Project 2 10

Cooper to Project 1 9

Total cost 25

Example 4.3 Suppose we have to allocate 4 tasks (1,2,3,4) between 4 people (W,X,Y,Z).

The costs are set out in the following table:

Task

Person 1 2 3 4

W 8 20 15 17

X 15 16 12 10

Y 22 19 16 30

Z 25 15 12 9

The entries in the table denote the costs of assigning a task to a particular person.

Solution: Step 1 of the Hungarian method involves the following parts:

(a) subtract the minimum value from each column (see Table 27)

(b) subtract the minimum value from each column (see Table 28)
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Task

Person 1 2 3 4

W 0 12 7 9

X 5 6 2 0

Y 6 3 0 14

Z 16 6 3 0

Table 27: Subtract the minimum

value from each row

Task

Person 1 2 3 4

W 0 9 7 9

X 5 3 2 0

Y 6 0 0 14

Z 16 3 3 0

Table 28: subtract the minimum

value from each column

The next step is to check whether optimal assignment can be made. This is done by finding

the minimum number of lines necessary to cross-out all the zero cells in the table. If this

is equal to n (the number of people/tasks) then the solution has been found. The minimum

number of lines necessary to cross through all the zeros (see Table 29)is 3 ¡ n = 4 so that

an optimal allocation has not been found.

( Note that there may be more than one way to draw the lines through the zero cells. It

does not matter which way you choose as long as there is no alternative way involving fewer

lines)

Task

Person 1 2 3 4

W 0 9 7 9

X 5 3 2 0

Y 6 0 0 14

Z 16 3 3 0

Table 29: Checking if an optimal assignment can been made

Next we revise the table by

(a) Finding the minimum uncovered cell. Table 29 shows that the minimum uncovered

cell has a value of 2

(b) Subtracting the value obtained in (a) (i.e subtract 2) from all the uncovered cells.

(c) Adding to all the cells at the intersection of the two lines.

The result of the above steps is given in Table 30.

We then check if the revised allocation is optimal. This is done by finding the minimum

number of lines required to cover all zeros (see Table 31).

This time the minimum number of lines necessary to cross through all the zeros is n = 4 so

that an optimal allocation has been found.

To make the final allocation we use the following steps.
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Task

Person 1 2 3 4

W 0 7 5 9

X 5 1 0 0

Y 8 0 0 16

Z 16 1 1 0

Table 30: Revising the Table

Task

Person 1 2 3 4

W 0 7 5 9

X 5 1 0 0

Y 8 0 0 16

Z 16 1 1 0

Table 31: Checking for optimality

• Find a row or column with only one zero cell.

• Make the assignment corresponding to that zero cell.

• eliminate that row and column from the table.

• Continue until all assignments have been found.

Task

Person 1 2 3 4

W 0 7 5 9

X 5 1 0 0

Y 8 0 0 16

Z 16 1 1 0

• Assign person W to task 1 and eliminate row W and column 1.

• Assign person Y to task 2 and eliminate row Y and column 2.

• Assign person Z to task 4 and eliminate row Z and column 4.

• This leaves final person X assigned to remaining task 3.

From the original cost table, we can determine the costs associated with the optimal assign-

ment:

Total Cost = 48

4.8 Maximization Assignment Problems

Some assignment problems are phrased in terms of maximizing the payoff, profit, or effec-

tiveness of an assignment instead of minimization costs. It is easy to obtain an equivalent

minimization problem by converting all numbers in the table to opportunity costs; efficien-

cies to inefficiencies,etc. This is achieved through subtracting every number in the original

payoff table from the largest single number in the number. The transformed entries represent

opportunity costs; it turns out that minimizing the opportunity costs produces the same
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assignment as the original maximization problem. Once the optimal assignment for this

transformed problem has been computed, the total payoff or profit is found by adding the

original payoffs of those cells that are in the original assignment.

Example. The British Navy wishes to assign four ships to patrol four sectors of the North

Sea. In some areas ships are to be on the outlook for illegal fishing boats, and in other

sectors to watch for enemy submarines, so the commander rates each ship in terms of its

profitable efficiency in each sector. These relative efficiencies are illustrated in Tables 32. On

the basis of the ratings shown, the commander wants to determine the patrol assignments

producing the greatest overall efficiencies.

SECTOR

SHIP A B C D

1 20 60 50 55

2 60 30 80 75

3 80 100 90 80

4 65 80 75 70

Table 32: Efficiencies of British Ships

in Patrol sectors

SECTOR

SHIP A B C D

1 80 40 50 45

2 40 70 20 25

3 20 0 10 20

4 35 20 25 30

Table 33: Opportunity Costs of

British Ships

We start by converting the maximizing efficiency table into a minimization opportunity cost

table. This is done by subtracting each rating from 100, the largest rating in the whole

table. The resulting opportunity costs are given in Table 33.

Next, we follow steps 1 and 2 of the assignment algorithm. The smallest number is sub-

tracted from every number in that row to give Table 34; and then the smallest number in

each column is subtracted from every number in that column as shown in Table 35.

SECTOR

SHIP A B C D

1 40 0 10 5

2 20 50 0 5

3 20 0 10 20

4 15 0 5 10

Table 34: Row opportunity costs for

the British Navy Problem

SECTOR

SHIP A B C D

1 25 0 10 0

2 5 50 0 0

3 5 0 10 15

4 0 0 5 5

Table 35: Total opportunity costs for

the British Navy Problem

The minimum number of straight lines needed to cover all zeros in this total opportunity

cost table is four. Hence an optimal assignment can be made. The optimal assignment is

ship 1 to sector D, ship 2 to sector C, ship 3 to sector B, and ship 4 to sector A.

The overall efficiency, computed from the original efficiency data Table 32, can now be

shown:
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ASSIGNMENT EFFICIENCY

Ship 1 to Sector D 55

Ship 2 to Sector C 80

Ship 3 to Sector B 100

Ship 4 to Sector A 65

Total Efficiency 300

4.9 Summary

In this section we discussed the Hungarian method for solving both maximization and

minimization assignment problems.

4.10 Exercises 4.3: Minimization Assignment Problems

1. Three accountants, Phindile, Rachel and Sibongile, are to be assigned to three projects,

1, 2 and 3. The assignment costs in units of E1000 are given in the table below.

Project

1 2 3

P 15 9 12

Accountant R 7 5 10

S 13 4 6

2. Joy Taxi has four taxis, 1,2,3 and 4, and there are four customers, P, Q, R and S

requiring taxis. The distance between the taxis and the customers are given in the

table below, in Kilometres. The Taxi company wishes to assign the taxis to customers

so that the distance traveled is a minimum.

Customers

P Q R S

1 10 8 4 6

Taxis 2 6 4 12 8

3 14 10 8 2

4 4 14 10 8

3. Four precision components are to be shaped using four machine tools, one tool being

assigned to each component. The machining times, in minutes, are given in the table

below.
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Component

1 2 3 4

A 21 20 39 36

Machine Tool B 25 22 24 25

C 36 22 36 26

D 34 21 25 39

4. In a job shop operation, four jobs may be performed on any of four machines. The

hours required for each job on each machine are presented in the following table. The

plant supervisor would like to assign jobs so that total time in minimized. Use the

assignment method to find the best solution.

MACHINE

JOB W X Y Z

A12 10 14 16 13

A15 12 13 15 12

B2 9 12 12 11

B9 14 16 18 16

Answer: A12 to W, A15 to Z, B2 to Y, B9 to Z, 50 hours.

4.11 Exercises 4.4: Maximization Assignment Problems

1. A head of department has four lecturers to assign to pure maths (1), mechanics (2),

statistics (3) and Quantitative techniques (4). All of the teachers have taught the

courses in the past and have been evaluated with a score from 0 to 100. The scores

are shown in the table below.

1 2 3 4

Peters 80 55 45 45

Radebe 58 35 70 50

Tsabedze 70 50 80 65

Williams 90 70 40 80

The head of department wishes to know the optimal assignment of teachers to courses

that will maximize the overall total score. Use the Hungarian algorithm to solve this

problem. [ P → 1 , R→ 3, T → 4, W → 2 Max Score = 285]

2. A department store has leased a new store and wishes to decide how to place four

departments in four locations so as to maximize total profits. The table below gives

the profits, in thousands of emalangeni, when the departments are allocated to the

various locations. Find the assignment that maximizes total profits.

131



Location

1 2 3 4

Shoes 20 16 22 18

Department Toys 25 28 15 21

Auto 27 20 23 26

Housewares 24 22 23 22

3. The head of the business department, has decided to apply the Hungarian method in

assigning lecturers to courses next semester. As a criterion for judging who should

teach each course, the head of department reviews the past two years’ teaching eval-

uations. All the four lecturers have taught each of the courses at one time or another

during the two year period. The ratings are shown in the table below.

Find the best assignment of lecturers to courses to maximize the overall teaching rat-

ing. Total Rating =

335

COURSE

LECTURER STATISTICS MANAGEMENT FINANCE ECONOMICS

Dlamini 90 65 95 40

Khumalo 70 60 80 75

Masuku 85 40 80 60

Nxumalo 55 80 65 55
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