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Sequence and Series of Functions

6.1 Sequence of Functions

6.1.1 Pointwise Convergence and Uniform Convergence

Let J be an interval in R.

Definition 6.1 For each n ∈ N, suppose a function fn : J → R is given. Then we
say that a a sequence (fn) of functions on J is given.

More precisely, a sequence of functions on J is a map F : N → F(J), where
F(J) is the set of all real valued functions defined on J . If fn := F (n) for n ∈ N,
then we denote F by (fn), and call (fn) as a sequence of functions. �

Definition 6.2 Let (fn) be a sequence of functions on an interval J .

(a) We say that (fn) converges at a point x0 ∈ J if the sequence (fn(x0)) of
real numbers converges.

(b) We say that (fn) converges pointwise on J if (fn) converges at every point
in J , i.e., for each x ∈ J , the sequence (fn(x)) of real numbers converges. �

Definition 6.3 Let (fn) be a sequence of functions on an interval J . If (fn) con-
verges pointwise on J , and if f : J → R is defined by f(x) = limn→∞ fn(x), x ∈ J ,
then we say that (fn) converges pointwise to f on J , and f is the pointwise
limit of (fn), and in that case we write

fn → f pointwise on J.

�

Thus, (fn) converges to f pointwise on J if and only if for every ε > 0 and for
each x ∈ J , there exists N ∈ N (depending, in general, on both ε and x) such that
|fn(x)− f(x)| < ε for all n ≥ N .

Exercise 6.1 Pointwise limit of a sequence of functions is unique.
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164 Sequence and Series of Functions M.T. Nair

Example 6.1 Consider fn : R→ R defined by

fn(x) =
sin(nx)

n
, x ∈ R

and for n ∈ N. Then we see that for each x ∈ R,

|fn(x)| ≤ 1

n
∀n ∈ N.

Thus, (fn) converges pointwise to f on R, where f is the zero function on R, i.e.,
f(x) = 0 for every x ∈ R. �

Suppose (fn) converges to f pontwise on J . As we have mentioned, it can happen
that for ε > 0, and for each x ∈ J , the number N ∈ N satisfying |fn(x)− f(x)| < ε
∀n ≥ N depends not only on ε but also on the point x. For instance, consider the
following example.

Example 6.2 Let fn(x) = xn for x ∈ [0, 1] and n ∈ N. Then we see that for
0 ≤ x < 1, fn(x)→ 0, and fn(1)→ 1 as n→∞. Thus, (fn) converges pointwise to
a function f defined by

f(x) =

{
0, x 6= 1,
1, x = 1.

In particular, (fn) converges pointwise to the zero function on [0, 1).

Note that if there exists N ∈ N such that |xn| < ε for all n ≥ N and for all
x ∈ [0, 1), then, letting x → 1, we would get 1 < ε, which is not possible, had we
chosen ε < 1. �

For ε > 0, if we are able to find an N ∈ N which does not vary as x varies
over J such that |fn(x)− f(x)| < ε for all n ≥ N , then we say that (fn) converges
uniformly to f on J . Following is the precise definition of uniform convergence of
(fn) to f on J .

Definition 6.4 Suppose (fn) is a sequence of functions defined on an interval J .
We say that (fn) converges to a function f uniformly on J if for every ε > 0
there exists N ∈ N (depending only on ε) such that

|fn(x)− f(x)| < ε ∀n ≥ N and ∀x ∈ J,

and in that case we write

fn → f uniformly on J.

�

We observe the following:

• If (fn) converges uniformly to f , then it converges to f pointwise as well.
Thus, if a sequence does not converge pointwise to any function, then it can not
converge uniformly.
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• If (fn) converges uniformly to f on J , then (fn) converges uniformly to f on
every subinterval J0 ⊆ J .

In Example 6.2 we obtained a sequence of functions which converges pointwise
but not uniformly. Here is another example of a sequence of functions which con-
verges pointwise but not uniformly.

Example 6.3 For each n ∈ N, let

fn(x) =
nx

1 + n2x2
, x ∈ [0, 1].

Note that fn(0) = 0, and for x 6= 0, fn(x) → 0 as n → ∞. Hence, (fn) converges
poitwise to the zero function. We do not have uniform convergence, as fn(1/n) = 1/2
for all n. Indeed, if (fn) converges uniformly, then there exists N ∈ N such that

|fN (x)| < ε ∀x ∈ [0, 1].

In particular, we must have

1

2
= |fN (1/N)| < ε ∀x ∈ [0, 1].

This is not possible if we had chosen ε < 1/2. �

Example 6.4 Consider the sequence (fn) defined by

fn(x) = tan−1(nx), x ∈ R.

Note that fn(0) = 0, and for x 6= 0, fn(x) → π/2 as n → ∞. Hence, the given
sequence (fn) converges pointwise to the function f defined by

f(x) =

{
0, x = 0,
π/2, x 6= 0.

However, it does not converge uniformly to f on any interval containing 0. To
see this, let J be an interval containing 0 and ε > 0. Let N ∈ N be such that
|fn(x)− f(x)| < ε for all n ≥ N and for all x ∈ J . In particular, we have

|fN (x)− π/2| < ε ∀x ∈ J \ {0}.

Letting x → 0, we have π/2 = |fN (0) − π/2| < ε which is not possible if we had
chooses ε < π/2. �

Now, we give a theorem which would help us to show non-uniform convergence
of certain sequence of functions.

Theorem 6.1 Suppose fn and f are functions defined on an interval J . If there
exists a sequence (xn) in J such that |fn(xn) − f(xn)| 6→ 0, then (fn) does not
converge uniformly to f on J .
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Proof. Suppose (fn) converges uniformly to f on J . Then, for every ε > 0, there
exists N ∈ N such that

|fn(x)− f(x)| < ε ∀n ≥ N, ∀x ∈ J.

In particular,

|fn(xn)− f(xn)| < ε ∀n ≥ N.

Hence, |fn(xn) − f(xn)| → 0 as n → ∞. This is a contradiction to the hypothesis
that |fn(xn)− f(xn)| 6→ 0. Hence our assumption that (fn) converges uniformly to
f on J is wrong.

In the case of Example 6.2, taking xn = n/(n+ 1), we see that

fn(xn) =

(
n

n+ 1

)n
→ 1

e
.

Hence, by Theorem 6.1, (fn) does not converge to f ≡ 0 uniformly on [0, 1).

In Example 6.3, we may take xn = 1/n, and in the case of Example 6.4, we may
take xn = π/n, and apply Theorem 6.1.

Exercise 6.2 Suppose fn and f are functions defined on an interval J . If there
exists a sequence (xn) in J such that [fn(xn) − f(xn)] 6→ 0, then (fn) does not
converge uniformly to f on J . Why?

[Suppose an := [fn(xn)− f(xn)] 6→ 0. Then there exists δ > 0 such that |an| ≥ δ
for infinitely many n. Now, if fn → f uniformly, there exists N ∈ N such that
|fn(x) − f(x)| < δ/2 for all n ≥ N . In particular, |an| < δ/2 for all n ≥ N . Thus,
we arrive at a contradiction.] J

Here is a sufficient condition for uniform convergence. Its proof is left as an
exercise.

Theorem 6.2 Suppose fn for n ∈ N and f are functions on J . If there exists a
sequence (αn) of positive reals satisfying αn → 0 as n→∞ and

|fn(x)− f(x)| ≤ αn ∀n ∈ N, ∀x ∈ J,

then (fn) converges uniformly to f .

Exercise 6.3 Supply detailed proof for Theorem 6.2. J

Here are a few examples to illustrate the above theorem.

Example 6.5 For each n ∈ N, let

fn(x) =
2nx

1 + n4x2
, x ∈ [0, 1].
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Since 1 + n4x2 ≥ 2n2x (using the relation a2 + b2 ≥ 2ab), we have

0 ≤ fn(x) ≤ 2nx

2n2x
=

1

n
.

Thus, by Theorem 6.2, (fn) converges uniformly to the zero function. �

Example 6.6 For each n ∈ N, let

fn(x) =
1

n3
log(1 + n4x2), x ∈ [0, 1].

Then we have

0 ≤ fn(x) ≤ 1

n3
log(1 + n4) =: αn ∀n ∈ N.

Taking g(t) := 1
t3

log(1 + t4) for t > 0, we see, using L’Hospital’s rule that

lim
t→∞

g(t) = lim
t→∞

4t3

3t2(1 + t4)
= 0.

In particular,

lim
n→∞

1

n3
log(1 + n4) = 0.

Thus, by Theorem 6.2, (fn) converges uniformly to the zero function. �

We may observe that in Examples 6.2 and 6.4, the limit function f is not con-
tinuous, although every fn is continuous. This makes us to ask the following:

Suppose each fn is a continuous function on J and (fn) converges to f pointwise.

• If f is Riemann integrable, then do we have∫ b

a
f(x)dx = lim

n→∞

∫ b

a
fn(x)dx

for every [a, b] ⊆ J?

• Suppose each fn is continuously differentiable on J . Then, is the function f
differentiable on J? If f is differentiable on J , then do we have the relation

d

dx
f(x) = lim

n→∞

d

dx
fn(x)dx ?

The answers to the above questions need not be affirmative as the following
examples show.

Example 6.7 For each n ∈ N, let

fn(x) = nx(1− x2)n, 0 ≤ x ≤ 1.
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Then we see that
lim
n→∞

fn(x) = 0 ∀x ∈ [0, 1].

Indeed, for each x ∈ (0, 1),

fn+1(x)

fn(x)
= x(1− x2)

(
n+ 1

n

)
→ x(1− x2) as n→∞.

Since x(1−x2) < 1 for x ∈ (0, 1), we obtain lim
n→∞

fn(x) = 0 for every x ∈ [0, 1]. But,∫ 1

0
fn(x)dx =

n

2n+ 2
→ 1

2
as n→∞.

Thus, limit of the integrals is not the integral of the limit. �

Example 6.8 For each n ∈ N, let

fn(x) =
sin(nx)√

n
, x ∈ R.

Then we see that
lim
n→∞

fn(x) = 0 ∀x ∈ [0, 1].

But, f ′n(x) =
√
n cos(nx) for all n ∈ N, so that

f ′n(0) =
√
n→∞ as n→∞.

Thus, limit of the derivatives is not the derivative of the limit. �

6.1.2 Continuity and uniform convergence

Theorem 6.3 Suppose (fn) is a sequence of continuous functions defined on an
interval J which converges uniformly to a function f . Then f is continuous on J .

Proof. Suppose x0 ∈ J . Then for any x ∈ J and for any n ∈ N,

|f(x)− f(x0)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(x0)|+ |fn(x0)− f(x0)|. (∗)

Let ε > 0 be given. Since (fn) converges to f uniformly, there exists N ∈ N such
that

|fn(x)− f(x)| < ε/3 ∀n ≥ N, ∀x ∈ J.

Since fN is continuous, there exists δ > 0 such that

|fN (x)− fN (x0)| < ε/3 whenever |x− x0| < δ.

Hence from (∗), we have

|f(x)− f(x0)| ≤ |f(x)− fN (x)|+ |fN (x)− fN (x0)|+ |fN (x0)− f(x0)| < ε

whenever |x − x0| < δ. Thus, f is continuous at x0. This is true for all x0 ∈ J .
Hence, f is a continuous function on J .
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6.1.3 Integration-Differentiation and uniform convergence

Theorem 6.4 Suppose (fn) is a sequence of continuous functions defined on an in-
terval [a, b] which converges uniformly to a function f on [a, b]. Then f is continuous
and

lim
n→∞

∫ b

a
fn(x)dx =

∫ b

a
f(x)dx.

Proof. We already know by Theorem 6.3 that f is a continuous function. Next
we note that ∣∣∣∣∫ b

a
fn(x)dx−

∫ b

a
f(x)dx

∣∣∣∣ ≤ ∫ b

a
|fn(x)− f(x)|dx.

Let ε > 0 be given. By uniform convergence of (fn) to f , there exists N ∈ N such
that

|fn(x)− f(x)| < ε/(b− a) ∀n ≥ N, ∀x ∈ [a, b].

Hence, for all n ≥ N ,∣∣∣∣∫ b

a
fn(x)dx−

∫ b

a
f(x)dx

∣∣∣∣ ≤ ∫ b

a
|fn(x)− f(x)|dx < ε.

This completes the proof.

Theorem 6.5 Suppose (fn) is a sequence of continuously differentiable functions
defined on an interval J such that

(i) (f ′n) converges uniformly to a function, and

(ii) (fn(a)) converges for some a ∈ J .

Then (fn) converges to a continuously differentiable function f and

lim
n→∞

f ′n(x) = f ′(x) ∀x ∈ J.

Proof. Let g(x) := lim
n→∞

f ′n(x) for x ∈ J , and α := lim
n→∞

fn(a). Since the conver-

gence of (f ′n) to g is uniform, by Theorem 6.4, the function g is continuous and

lim
n→∞

∫ x

a
f ′n(t)dt =

∫ x

a
g(t)dt.

Let ϕ(x) :=
∫ x
a g(t)dt, x ∈ J . Then ϕ is differentiable and ϕ′(x) = g(x) for x ∈ J .

But,
∫ x
a f
′
n(t)dt = fn(x)− fn(a). Hence, we have

lim
n→∞

[fn(x)− fn(a)] = ϕ(x).

Thus, (fn) converges pointwise to a differentiable function f defined by f(x) =
ϕ(x) + α, x ∈ J , and (f ′n) converges to f ′.

Remark 6.1 In Theorem 6.5, it an be shown that the convergence of the sequence
(fn) is uniform. �
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6.2 Series of Functions

Definition 6.5 By a series of functions on a interval J , we mean an expression
of the form

∞∑
n=1

fn or
∞∑
n=1

fn(x),

where (fn) is a sequence of functions defined on J . �

Definition 6.6 Given a series
∑∞

n=1 fn(x) of functions on an interval J , let

sn(x) :=
n∑
i=1

fi(x), x ∈ J.

Then sn is called the n-th partial sum of the series
∑∞

n=1 fn. �

Definition 6.7 Consider a series
∑∞

n=1 fn(x) of functions on an interval J , and let
sn(x) be its n-th partial sum. Then we say that the series

∑∞
n=1 fn(x)

(a) converges at a point x0 ∈ J if (sn) converges at x0,

(b) converges pointwise on J if (sn) converges pointwise on J , and

(c) converges uniformly on J if (sn) converges uniformly on J . �

The proof of the following two theorems are obvious from the statements of
Theorems 6.4 and 6.5 respectively.

Theorem 6.6 Suppose (fn) is a sequence of continuous functions on J . If
∑∞

n=1 fn(x)
converges uniformly on J , say to f(x), then f is continuous on J , and for [a, b] ⊆ J ,∫ b

a
f(x)dx =

∞∑
n=1

∫ b

a
fn(x)dx.

Theorem 6.7 Suppose (fn) is a sequence of continuously differentiable functions on
J . If

∑∞
n=1 f

′
n(x) converges uniformly on J , and if

∑∞
n=1 fn(x) converges at some

point x0 ∈ J , then
∑∞

n=1 fn(x) converges to a differentiable function on J , and

d

dx

( ∞∑
n=1

fn(x)

)
=

∞∑
n=1

f ′n(x).

Next we consider a useful sufficient condition to check uniform convergence. First
a definition.

Definition 6.8 We say that
∑∞

n=1 fn is a dominated series if there exists a
sequence (αn) of positive real numbers such that |fn(x)| ≤ αn for all x ∈ J and for
all n ∈ N, and the series

∑∞
n=1 αn converges. �
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Theorem 6.8 A dominated series converges uniformly.

Proof. Let
∑∞

n=1 fn be a dominated series defined on an interval J , and let (αn)
be a sequence of positive reals such that

(i) |fn(x)| ≤ αn for all n ∈ N and for all x ∈ J , and

(ii)
∑∞

n=1 αn converges.

Let sn(x) =
∑n

i=1 fi(x), n ∈ N. Then for n > m,

|sn(x)− sm(x)| =

∣∣∣∣∣
n∑

i=m+1

fi(x)

∣∣∣∣∣ ≤
n∑

i=m+1

|fi(x)| ≤
n∑

i=m+1

αi = σn − σm,

where σn =
∑n

k=1 αk. Since
∑∞

n=1 αn converges, the sequence (σn) is a Cauchy
sequence. Now, let ε > 0 be given, and let N ∈ N be such that

|σn − σm| < ε ∀n,m ≥ N.

Hence, from the relation: |sn(x)− sm(x)| ≤ σn − σm, we have

|sn(x)− sm(x)| < ε ∀n,m ≥ N, ∀x ∈ J.

This, in particular implies that {sn(x)} is also a Cauchy sequence at each x ∈ J .
Hence, {sn(x)} converges for each x ∈ J . Let f(x) = limn→∞ sn(x), x ∈ J . Then,
we have

|f(x)− sm(x)| = lim
n→∞

|sn(x)− sm(x)| < ε ∀m ≥ N, ∀x ∈ J.

Thus, the series
∑∞

n=1 fn converges uniformly to f on J .

Example 6.9 The series
∑∞

n=1
cosnx
n2 and

∑∞
n=1

sinnx
n2 are dominated series, since∣∣∣cosnx

n2

∣∣∣ ≤ 1

n2
,

∣∣∣∣sinnxn2

∣∣∣∣ ≤ 1

n2
∀n ∈ N

and
∑∞

n=1
1
n2 is convergent. �

Example 6.10 The series
∑∞

n=0 x
n is a dominated series on [−ρ, ρ] for 0 < ρ < 1,

since |xn| ≤ ρn for all n ∈ N and
∑∞

n=0 ρ
n is convergent. Thus, the given series is a

dominated series, and hence, it is uniformly convergent. �

Example 6.11 Consider the series
∑∞

n=1
x

n(1+nx2)
on R. Note that

x

n(1 + nx2)
≤ 1

n

(
1

2
√
n

)
,

and

∞∑
n=1

1

n3/2
converges. Thus, the given series is dominated series, and hence it

converges uniformly on R. �
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Example 6.12 Consider the series
∑∞

n=1
x

1+n2x2
for x ∈ [c,∞), c > 0. Note that

x

1 + n2x2
≤ x

n2x2
=≤ 1

n2x
≤ 1

n2c

and
∞∑
n=1

1

n2
converges. Thus, the given series is dominated series, and hence it

converges uniformly on [c,∞). �

Example 6.13 The series
∑∞

n=1

(
xe−x

)n
is dominated on [0,∞): To see this, note

that (
xe−x

)n
=

xn

enx
≤ xn

(nx)n/n!
=
n!

nn

and the series
∑∞

n=1
n!
nn converges.

It can also be seen that |xe−x| ≤ 1/2 for all x ∈ [0,∞). �

Example 6.14 The series
∑∞

n=1 x
n−1 is not uniformly convergent on (0, 1); in

particular, not dominated on (0, 1). This is seen as follows: Note that

sn(x) :=

n∑
k=1

xk−1 =
1− xn

1− x
→ f(x) :=

1

1− x
as n→∞.

Hence, for ε > 0,

|f(x)− sn(x)| < ε ⇐⇒
∣∣∣∣ xn

1− x

∣∣∣∣ < ε.

Hence, if there exists N ∈ N such that |f(x) − sn(x)| < ε for all n ≥ N for all
x ∈ (0, 1), then we would get

|x|N

|1− x|
< ε ∀x ∈ (0, 1).

This is not possible, as |x|N/|1− x| → ∞ as x→ 1.

However, we have seen that the above series is dominated on [−a, a] for 0 < a < 1.

�
Example 6.15 The series

∑∞
n=1(1 − x)xn−1 is not uniformly convergent on [0, 1];

in particular, not dominated on [0, 1]. This is seen as follows: Note that

sn(x) :=

n∑
k=1

(1− x)xk−1 =

{
1− xn if x 6= 1
0 if x = 1.

In particular, sn(x) = 1−xn for all x ∈ [0, 1) and n ∈ N. By Example 6.2, we know
that (sn(x)) converges to f(x) ≡ 1 pointwise, but not uniformly. �
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Remark 6.2 Note that if a series
∑∞

n=1 fn converges uniformly to a function f on
an interval J , then we must have

βn := sup
x∈J
|sn(x)− f(x)| → 0 as n→∞.

Here, sn is the n-th partial sum of the series. Conversely, if βn → 0, then the series
is uniformly convergent. Thus, if

∑∞
n=1 fn converges to a function f on J , and if

supx∈J |sn(x)− f(x)| 6→ 0 as n→∞, then we can infer that the convergence is not
uniform.

As an illustration, consider the Example 6.15. There we have

|sn(x)− f(x)| =
{
xn if x 6= 1
0 if x = 1.

Hence, sup|x|≤1 |sn(x)−f(x)| = 1. Moreover, the limit function f is not continuous.
Hence, the non-uniform convergence also follows from Theorem 6.6. �

Exercise 6.4 Consider a series
∑∞

n=1 fn and an := supx∈J |fn(x)|. Show that this
series is dominated series if and only if

∑∞
n=1 an converges. J

Next example shows that in Theorem 6.7, the condition that the derived series
converges uniformly is not a necessary condition for the the conclusion.

Example 6.16 Consider the series
∑∞

n=0 x
n. We know that it converges to 1/(1− x)

for |x| < 1. It can be seen that the derived series
∑∞

n=1 nx
n−1 converges uniformly

for |x| ≤ ρ for any ρ ∈ (0, 1). This follows since
∑∞

n=1 nρ
n−1 converges. Hence,

1

(1− x)2
=

d

dx

1

1− x
=
∞∑
n=1

nxn−1 for |x| ≤ ρ.

The above relation is true for x in any open interval J ⊆ (−1, 1); because we can
choose ρ sufficiently close to 1 such that J ⊆ [−ρ, ρ]. Hence, we have

1

(1− x)2
=
∞∑
n=1

nxn−1 for |x| < 1.

We know that the given series is not uniformly convergent (see, Example 6.14). �

Remark 6.3 We have seen that if
∑∞

n=1 fn(x) is a dominated series on an interval
J , then it converges uniformly and absolutely, and that an absolutely convergent
series need not be a dominated series. Are there series which converge uniformly
but not dominated. The answer is in affirmative. Look at the following series:

∞∑
n=1

(−1)n+1x
n

n
, x ∈ [0, 1].

Since

∞∑
n=1

1

n
is divergent, the given series is not absolutely convergent at x = 1 and

hence it is not a dominated series. However, the given series converges uniformly
on [0, 1]. �
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6.3 Additional Exercises

1. Let fn(x) =
x2

(1 + x2)n
for x ≥ 0. Show that the series

∞∑
n=1

fn(x) does not

converge uniformly.

2. Let fn(x) =
x

1 + nx2
, x ∈ R. Show that (fn) converge uniformly, whereas (f ′n)

does not converge uniformly. Is the relation lim
n→∞

f ′n(x) =
(

lim
n→∞

fn(x)
)′

true

for all x ∈ R?

3. Let fn(x) =
log(1 + n3x2)

n2
, and gn(x) =

2nx

1 + n3x2
for x ∈ [0, 1]. Show that

the sequence (gn) converges uniformly to g where g(x) = 0 for all x ∈ [0, 1].
Using this fact, show that (fn) also converges uniformly to the zero function
on [0, 1].

4. Let fn(x) =


n2x, 0 ≤ x ≤ 1/n,
−n2x+ 2n, 1/n ≤ x ≤ 2/n,
0, 2/n ≤ x ≤ 1.

Show that (fn) does not converge uniformly of [0, 1].

[Hint: Use termwise integration.]

5. Suppose (an) is such that
∑∞

n=1 an is absolutely convergent. Show that

∞∑
n=1

anx
2n

1 + x2n

is a dominated series on R.

6. Show that for each p > 1, the series

∞∑
n=1

xn

np
is convergent on [−1, 1] and the

limit function is continuous.

7. Show that the series

∞∑
n=1

{(n+1)2xn+1−n2xn}(1−x) converges to a continuous

function on [0, 1], but it is not dominated.

8. Show that the series

∞∑
n=1

[ 1

1 + (k + 1)x
− 1

1 + kx

]
is convergent on [0, 1], but

not dominated, and∫ 1

0

∞∑
n=1

[ 1

1 + (k + 1)x
− 1

1 + kx

]
dx =

∞∑
n=1

∫ 1

0

[ 1

1 + (k + 1)x
− 1

1 + kx

]
dx.

9. Show that

∫ 1

0

∞∑
n=1

x

(n+ x2)2
dx =

1

2
.


