Sequence and Series of Functions

6.1 Sequence of Functions

6.1.1 Pointwise Convergence and Uniform Convergence

Let J be an interval in \mathbb{R} .

Definition 6.1 For each $n \in \mathbb{N}$, suppose a function $f_n : J \to \mathbb{R}$ is given. Then we say that a a sequence (f_n) of functions on J is given.

More precisely, a sequence of functions on J is a map $F : \mathbb{N} \to \mathcal{F}(J)$, where $\mathcal{F}(J)$ is the set of all real valued functions defined on J. If $f_n := F(n)$ for $n \in \mathbb{N}$, then we denote F by (f_n) , and call (f_n) as a sequence of functions.

Definition 6.2 Let (f_n) be a sequence of functions on an interval J.

(a) We say that (f_n) converges at a point $x_0 \in J$ if the sequence $(f_n(x_0))$ of real numbers converges.

(b) We say that (f_n) converges pointwise on J if (f_n) converges at every point in J, i.e., for each $x \in J$, the sequence $(f_n(x))$ of real numbers converges.

Definition 6.3 Let (f_n) be a sequence of functions on an interval J. If (f_n) converges pointwise on J, and if $f: J \to \mathbb{R}$ is defined by $f(x) = \lim_{n\to\infty} f_n(x), x \in J$, then we say that (f_n) converges pointwise to f on J, and f is the pointwise limit of (f_n) , and in that case we write

$$f_n \to f$$
 pointwise on J .

Thus, (f_n) converges to f pointwise on J if and only if for every $\varepsilon > 0$ and for each $x \in J$, there exists $N \in \mathbb{N}$ (depending, in general, on both ε and x) such that $|f_n(x) - f(x)| < \varepsilon$ for all $n \ge N$.

Exercise **6.1** Pointwise limit of a sequence of functions is unique.

164 Sequence and Series of Functions

Example 6.1 Consider $f_n : \mathbb{R} \to \mathbb{R}$ defined by

$$f_n(x) = \frac{\sin(nx)}{n}, \qquad x \in \mathbb{R}$$

and for $n \in \mathbb{N}$. Then we see that for each $x \in \mathbb{R}$,

$$|f_n(x)| \le \frac{1}{n} \qquad \forall n \in \mathbb{N}.$$

Thus, (f_n) converges pointwise to f on \mathbb{R} , where f is the zero function on \mathbb{R} , i.e., f(x) = 0 for every $x \in \mathbb{R}$.

Suppose (f_n) converges to f pontwise on J. As we have mentioned, it can happen that for $\varepsilon > 0$, and for each $x \in J$, the number $N \in \mathbb{N}$ satisfying $|f_n(x) - f(x)| < \varepsilon$ $\forall n \ge N$ depends not only on ε but also on the point x. For instance, consider the following example.

Example 6.2 Let $f_n(x) = x^n$ for $x \in [0,1]$ and $n \in \mathbb{N}$. Then we see that for $0 \le x < 1$, $f_n(x) \to 0$, and $f_n(1) \to 1$ as $n \to \infty$. Thus, (f_n) converges pointwise to a function f defined by

$$f(x) = \begin{cases} 0, & x \neq 1, \\ 1, & x = 1. \end{cases}$$

In particular, (f_n) converges pointwise to the zero function on [0, 1).

Note that if there exists $N \in \mathbb{N}$ such that $|x^n| < \varepsilon$ for all $n \ge N$ and for all $x \in [0,1)$, then, letting $x \to 1$, we would get $1 < \varepsilon$, which is not possible, had we chosen $\varepsilon < 1$.

For $\varepsilon > 0$, if we are able to find an $N \in \mathbb{N}$ which does not vary as x varies over J such that $|f_n(x) - f(x)| < \varepsilon$ for all $n \ge N$, then we say that (f_n) converges uniformly to f on J. Following is the precise definition of uniform convergence of (f_n) to f on J.

Definition 6.4 Suppose (f_n) is a sequence of functions defined on an interval J. We say that (f_n) converges to a function f uniformly on J if for every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ (depending only on ε) such that

$$|f_n(x) - f(x)| < \varepsilon \quad \forall n \ge N \text{ and } \forall x \in J,$$

and in that case we write

$$f_n \to f$$
 uniformly on J

We observe the following:

• If (f_n) converges uniformly to f, then it converges to f pointwise as well. Thus, if a sequence does not converge pointwise to any function, then it can not converge uniformly. • If (f_n) converges uniformly to f on J, then (f_n) converges uniformly to f on every subinterval $J_0 \subseteq J$.

In Example 6.2 we obtained a sequence of functions which converges pointwise but not uniformly. Here is another example of a sequence of functions which converges pointwise but not uniformly.

Example 6.3 For each $n \in \mathbb{N}$, let

$$f_n(x) = \frac{nx}{1 + n^2 x^2}, \qquad x \in [0, 1].$$

Note that $f_n(0) = 0$, and for $x \neq 0$, $f_n(x) \to 0$ as $n \to \infty$. Hence, (f_n) converges poitwise to the zero function. We do not have uniform convergence, as $f_n(1/n) = 1/2$ for all n. Indeed, if (f_n) converges uniformly, then there exists $N \in \mathbb{N}$ such that

$$|f_N(x)| < \varepsilon \qquad \forall x \in [0,1].$$

In particular, we must have

$$\frac{1}{2} = |f_N(1/N)| < \varepsilon \qquad \forall x \in [0,1].$$

This is not possible if we had chosen $\varepsilon < 1/2$.

Example 6.4 Consider the sequence (f_n) defined by

$$f_n(x) = \tan^{-1}(nx), \qquad x \in \mathbb{R}.$$

Note that $f_n(0) = 0$, and for $x \neq 0$, $f_n(x) \rightarrow \pi/2$ as $n \rightarrow \infty$. Hence, the given sequence (f_n) converges pointwise to the function f defined by

$$f(x) = \begin{cases} 0, & x = 0, \\ \pi/2, & x \neq 0. \end{cases}$$

However, it does not converge uniformly to f on any interval containing 0. To see this, let J be an interval containing 0 and $\varepsilon > 0$. Let $N \in \mathbb{N}$ be such that $|f_n(x) - f(x)| < \varepsilon$ for all $n \ge N$ and for all $x \in J$. In particular, we have

$$|f_N(x) - \pi/2| < \varepsilon \qquad \forall x \in J \setminus \{0\}.$$

Letting $x \to 0$, we have $\pi/2 = |f_N(0) - \pi/2| < \varepsilon$ which is not possible if we had chooses $\varepsilon < \pi/2$.

Now, we give a theorem which would help us to show non-uniform convergence of certain sequence of functions.

Theorem 6.1 Suppose f_n and f are functions defined on an interval J. If there exists a sequence (x_n) in J such that $|f_n(x_n) - f(x_n)| \neq 0$, then (f_n) does not converge uniformly to f on J.

M.T. Nair

Proof. Suppose (f_n) converges uniformly to f on J. Then, for every $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$|f_n(x) - f(x)| < \varepsilon \quad \forall n \ge N, \quad \forall x \in J.$$

In particular,

$$|f_n(x_n) - f(x_n)| < \varepsilon \quad \forall n \ge N.$$

Hence, $|f_n(x_n) - f(x_n)| \to 0$ as $n \to \infty$. This is a contradiction to the hypothesis that $|f_n(x_n) - f(x_n)| \neq 0$. Hence our assumption that (f_n) converges uniformly to f on J is wrong.

In the case of Example 6.2, taking $x_n = n/(n+1)$, we see that

$$f_n(x_n) = \left(\frac{n}{n+1}\right)^n \to \frac{1}{e}.$$

Hence, by Theorem 6.1, (f_n) does not converge to $f \equiv 0$ uniformly on [0, 1).

In Example 6.3, we may take $x_n = 1/n$, and in the case of Example 6.4, we may take $x_n = \pi/n$, and apply Theorem 6.1.

Exercise 6.2 Suppose f_n and f are functions defined on an interval J. If there exists a sequence (x_n) in J such that $[f_n(x_n) - f(x_n)] \not\rightarrow 0$, then (f_n) does not converge uniformly to f on J. Why?

[Suppose $a_n := [f_n(x_n) - f(x_n)] \not\to 0$. Then there exists $\delta > 0$ such that $|a_n| \ge \delta$ for infinitely many n. Now, if $f_n \to f$ uniformly, there exists $N \in \mathbb{N}$ such that $|f_n(x) - f(x)| < \delta/2$ for all $n \ge N$. In particular, $|a_n| < \delta/2$ for all $n \ge N$. Thus, we arrive at a contradiction.]

Here is a sufficient condition for uniform convergence. Its proof is left as an exercise.

Theorem 6.2 Suppose f_n for $n \in \mathbb{N}$ and f are functions on J. If there exists a sequence (α_n) of positive reals satisfying $\alpha_n \to 0$ as $n \to \infty$ and

$$|f_n(x) - f(x)| \le \alpha_n \quad \forall n \in \mathbb{N}, \quad \forall x \in J,$$

then (f_n) converges uniformly to f.

Exercise 6.3 Supply detailed proof for Theorem 6.2.

◀

Here are a few examples to illustrate the above theorem.

Example 6.5 For each $n \in \mathbb{N}$, let

$$f_n(x) = \frac{2nx}{1+n^4x^2}, \qquad x \in [0,1].$$

Since $1 + n^4 x^2 \ge 2n^2 x$ (using the relation $a^2 + b^2 \ge 2ab$), we have

$$0 \le f_n(x) \le \frac{2nx}{2n^2x} = \frac{1}{n}.$$

Thus, by Theorem 6.2, (f_n) converges uniformly to the zero function. Example 6.6 For each $n \in \mathbb{N}$, let

$$f_n(x) = \frac{1}{n^3} \log(1 + n^4 x^2), \qquad x \in [0, 1].$$

Then we have

$$0 \le f_n(x) \le \frac{1}{n^3} \log(1+n^4) =: \alpha_n \quad \forall n \in \mathbb{N}.$$

Taking $g(t) := \frac{1}{t^3} \log(1 + t^4)$ for t > 0, we see, using L'Hospital's rule that

$$\lim_{t \to \infty} g(t) = \lim_{t \to \infty} \frac{4t^3}{3t^2(1+t^4)} = 0.$$

In particular,

$$\lim_{n \to \infty} \frac{1}{n^3} \log(1 + n^4) = 0.$$

Thus, by Theorem 6.2, (f_n) converges uniformly to the zero function.

We may observe that in Examples 6.2 and 6.4, the limit function f is not continuous, although every f_n is continuous. This makes us to ask the following:

Suppose each f_n is a continuous function on J and (f_n) converges to f pointwise.

• If f is Riemann integrable, then do we have

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \int_{a}^{b} f_{n}(x)dx$$

for every $[a, b] \subseteq J$?

• Suppose each f_n is continuously differentiable on J. Then, is the function f differentiable on J? If f is differentiable on J, then do we have the relation

$$\frac{d}{dx}f(x) = \lim_{n \to \infty} \frac{d}{dx}f_n(x)dx?$$

The answers to the above questions need not be affirmative as the following examples show.

Example 6.7 For each $n \in \mathbb{N}$, let

$$f_n(x) = nx(1-x^2)^n, \qquad 0 \le x \le 1.$$

Then we see that

$$\lim_{n \to \infty} f_n(x) = 0 \quad \forall x \in [0, 1].$$

Indeed, for each $x \in (0, 1)$,

$$\frac{f_{n+1}(x)}{f_n(x)} = x(1-x^2)\left(\frac{n+1}{n}\right) \to x(1-x^2) \quad \text{as} \quad n \to \infty.$$

Since $x(1-x^2) < 1$ for $x \in (0,1)$, we obtain $\lim_{n \to \infty} f_n(x) = 0$ for every $x \in [0,1]$. But,

$$\int_0^1 f_n(x)dx = \frac{n}{2n+2} \to \frac{1}{2} \quad \text{as} \quad n \to \infty.$$

Thus, limit of the integrals is not the integral of the limit.

Example 6.8 For each $n \in \mathbb{N}$, let

$$f_n(x) = \frac{\sin(nx)}{\sqrt{n}}, \qquad x \in \mathbb{R}$$

Then we see that

$$\lim_{n \to \infty} f_n(x) = 0 \quad \forall x \in [0, 1].$$

But, $f'_n(x) = \sqrt{n} \cos(nx)$ for all $n \in \mathbb{N}$, so that

$$f'_n(0) = \sqrt{n} \to \infty \quad \text{as} \quad n \to \infty.$$

Thus, limit of the derivatives is not the derivative of the limit.

6.1.2 Continuity and uniform convergence

Theorem 6.3 Suppose (f_n) is a sequence of continuous functions defined on an interval J which converges uniformly to a function f. Then f is continuous on J.

Proof. Suppose $x_0 \in J$. Then for any $x \in J$ and for any $n \in \mathbb{N}$,

$$|f(x) - f(x_0)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(x_0)| + |f_n(x_0) - f(x_0)|.$$
(*)

Let $\varepsilon > 0$ be given. Since (f_n) converges to f uniformly, there exists $N \in \mathbb{N}$ such that

$$|f_n(x) - f(x)| < \varepsilon/3 \quad \forall n \ge N, \, \forall x \in J.$$

Since f_N is continuous, there exists $\delta > 0$ such that

 $|f_N(x) - f_N(x_0)| < \varepsilon/3$ whenever $|x - x_0| < \delta$.

Hence from (*), we have

$$|f(x) - f(x_0)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(x_0)| + |f_N(x_0) - f(x_0)| < \varepsilon$$

whenever $|x - x_0| < \delta$. Thus, f is continuous at x_0 . This is true for all $x_0 \in J$. Hence, f is a continuous function on J.

M.T. Nair

6.1.3 Integration-Differentiation and uniform convergence

Theorem 6.4 Suppose (f_n) is a sequence of continuous functions defined on an interval [a, b] which converges uniformly to a function f on [a, b]. Then f is continuous and

$$\lim_{n \to \infty} \int_{a}^{b} f_{n}(x) dx = \int_{a}^{b} f(x) dx.$$

Proof. We already know by Theorem 6.3 that f is a continuous function. Next we note that

$$\left|\int_{a}^{b} f_{n}(x)dx - \int_{a}^{b} f(x)dx\right| \leq \int_{a}^{b} |f_{n}(x) - f(x)|dx.$$

Let $\varepsilon > 0$ be given. By uniform convergence of (f_n) to f, there exists $N \in \mathbb{N}$ such that

$$|f_n(x) - f(x)| < \varepsilon/(b-a) \quad \forall n \ge N, \, \forall x \in [a, b].$$

Hence, for all $n \geq N$,

$$\left| \int_{a}^{b} f_{n}(x) dx - \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f_{n}(x) - f(x)| dx < \varepsilon.$$

This completes the proof.

Theorem 6.5 Suppose (f_n) is a sequence of continuously differentiable functions defined on an interval J such that

(i) (f'_n) converges uniformly to a function, and

r

(ii) $(f_n(a))$ converges for some $a \in J$.

Then (f_n) converges to a continuously differentiable function f and

$$\lim_{n \to \infty} f'_n(x) = f'(x) \quad \forall x \in J.$$

Proof. Let $g(x) := \lim_{n \to \infty} f'_n(x)$ for $x \in J$, and $\alpha := \lim_{n \to \infty} f_n(a)$. Since the convergence of (f'_n) to g is uniform, by Theorem 6.4, the function g is continuous and

$$\lim_{n \to \infty} \int_a^x f'_n(t) dt = \int_a^x g(t) dt.$$

Let $\varphi(x) := \int_a^x g(t)dt$, $x \in J$. Then φ is differentiable and $\varphi'(x) = g(x)$ for $x \in J$. But, $\int_a^x f'_n(t)dt = f_n(x) - f_n(a)$. Hence, we have

$$\lim_{n \to \infty} [f_n(x) - f_n(a)] = \varphi(x).$$

Thus, (f_n) converges pointwise to a differentiable function f defined by $f(x) = \varphi(x) + \alpha, x \in J$, and (f'_n) converges to f'.

Remark 6.1 In Theorem 6.5, it as be shown that the convergence of the sequence (f_n) is uniform.

6.2 Series of Functions

Definition 6.5 By a series of functions on a interval J, we mean an expression of the form

$$\sum_{n=1}^{\infty} f_n \quad \text{or} \quad \sum_{n=1}^{\infty} f_n(x),$$

where (f_n) is a sequence of functions defined on J.

Definition 6.6 Given a series $\sum_{n=1}^{\infty} f_n(x)$ of functions on an interval J, let

$$s_n(x) := \sum_{i=1}^n f_i(x), \quad x \in J.$$

Then s_n is called the *n*-th partial sum of the series $\sum_{n=1}^{\infty} f_n$.

Definition 6.7 Consider a series $\sum_{n=1}^{\infty} f_n(x)$ of functions on an interval J, and let $s_n(x)$ be its *n*-th partial sum. Then we say that the series $\sum_{n=1}^{\infty} f_n(x)$

- (a) converges at a point $x_0 \in J$ if (s_n) converges at x_0 ,
- (b) converges pointwise on J if (s_n) converges pointwise on J, and
- (c) converges uniformly on J if (s_n) converges uniformly on J.

The proof of the following two theorems are obvious from the statements of Theorems 6.4 and 6.5 respectively.

Theorem 6.6 Suppose (f_n) is a sequence of continuous functions on J. If $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on J, say to f(x), then f is continuous on J, and for $[a,b] \subseteq J$,

$$\int_{a}^{b} f(x)dx = \sum_{n=1}^{\infty} \int_{a}^{b} f_n(x)dx.$$

Theorem 6.7 Suppose (f_n) is a sequence of continuously differentiable functions on J. If $\sum_{n=1}^{\infty} f'_n(x)$ converges uniformly on J, and if $\sum_{n=1}^{\infty} f_n(x)$ converges at some point $x_0 \in J$, then $\sum_{n=1}^{\infty} f_n(x)$ converges to a differentiable function on J, and

$$\frac{d}{dx}\left(\sum_{n=1}^{\infty}f_n(x)\right) = \sum_{n=1}^{\infty}f'_n(x).$$

Next we consider a useful sufficient condition to check uniform convergence. First a definition.

Definition 6.8 We say that $\sum_{n=1}^{\infty} f_n$ is a **dominated series** if there exists a sequence (α_n) of positive real numbers such that $|f_n(x)| \leq \alpha_n$ for all $x \in J$ and for all $n \in \mathbb{N}$, and the series $\sum_{n=1}^{\infty} \alpha_n$ converges.

Theorem 6.8 A dominated series converges uniformly.

Proof. Let $\sum_{n=1}^{\infty} f_n$ be a dominated series defined on an interval J, and let (α_n) be a sequence of positive reals such that

- (i) $|f_n(x)| \leq \alpha_n$ for all $n \in \mathbb{N}$ and for all $x \in J$, and
- (ii) $\sum_{n=1}^{\infty} \alpha_n$ converges.

Let $s_n(x) = \sum_{i=1}^n f_i(x), n \in \mathbb{N}$. Then for n > m,

$$|s_n(x) - s_m(x)| = \left|\sum_{i=m+1}^n f_i(x)\right| \le \sum_{i=m+1}^n |f_i(x)| \le \sum_{i=m+1}^n \alpha_i = \sigma_n - \sigma_m,$$

where $\sigma_n = \sum_{k=1}^n \alpha_k$. Since $\sum_{n=1}^\infty \alpha_n$ converges, the sequence (σ_n) is a Cauchy sequence. Now, let $\varepsilon > 0$ be given, and let $N \in \mathbb{N}$ be such that

$$|\sigma_n - \sigma_m| < \varepsilon \quad \forall n, m \ge N.$$

Hence, from the relation: $|s_n(x) - s_m(x)| \le \sigma_n - \sigma_m$, we have

$$|s_n(x) - s_m(x)| < \varepsilon \quad \forall n, m \ge N, \, \forall x \in J.$$

This, in particular implies that $\{s_n(x)\}$ is also a Cauchy sequence at each $x \in J$. Hence, $\{s_n(x)\}$ converges for each $x \in J$. Let $f(x) = \lim_{n \to \infty} s_n(x), x \in J$. Then, we have

$$|f(x) - s_m(x)| = \lim_{n \to \infty} |s_n(x) - s_m(x)| < \varepsilon \quad \forall m \ge N, \, \forall x \in J.$$

Thus, the series $\sum_{n=1}^{\infty} f_n$ converges uniformly to f on J.

Example 6.9 The series $\sum_{n=1}^{\infty} \frac{\cos nx}{n^2}$ and $\sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$ are dominated series, since

$$\left|\frac{\cos nx}{n^2}\right| \le \frac{1}{n^2}, \qquad \left|\frac{\sin nx}{n^2}\right| \le \frac{1}{n^2} \quad \forall n \in \mathbb{N}$$

and $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent.

Example 6.10 The series $\sum_{n=0}^{\infty} x^n$ is a dominated series on $[-\rho, \rho]$ for $0 < \rho < 1$, since $|x^n| \le \rho^n$ for all $n \in \mathbb{N}$ and $\sum_{n=0}^{\infty} \rho^n$ is convergent. Thus, the given series is a dominated series, and hence, it is uniformly convergent.

Example 6.11 Consider the series $\sum_{n=1}^{\infty} \frac{x}{n(1+nx^2)}$ on \mathbb{R} . Note that

$$\frac{x}{n(1+nx^2)} \le \frac{1}{n} \left(\frac{1}{2\sqrt{n}}\right),$$

and $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$ converges. Thus, the given series is dominated series, and hence it converges uniformly on \mathbb{R} .

172 Sequence and Series of Functions

Example 6.12 Consider the series $\sum_{n=1}^{\infty} \frac{x}{1+n^2x^2}$ for $x \in [c, \infty), c > 0$. Note that

$$\frac{x}{1+n^2x^2} \le \frac{x}{n^2x^2} = \le \frac{1}{n^2x} \le \frac{1}{n^2c}$$

and $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges. Thus, the given series is dominated series, and hence it converges uniformly on $[c, \infty)$.

Example 6.13 The series $\sum_{n=1}^{\infty} (xe^{-x})^n$ is dominated on $[0,\infty)$: To see this, note that

$$\left(xe^{-x}\right)^n = \frac{x^n}{e^{nx}} \le \frac{x^n}{(nx)^n/n!} = \frac{n!}{n^n}$$

and the series $\sum_{n=1}^{\infty} \frac{n!}{n^n}$ converges.

It can also be seen that $|xe^{-x}| \le 1/2$ for all $x \in [0, \infty)$.

Example 6.14 The series $\sum_{n=1}^{\infty} x^{n-1}$ is not uniformly convergent on (0,1); in particular, not dominated on (0,1). This is seen as follows: Note that

$$s_n(x) := \sum_{k=1}^n x^{k-1} = \frac{1-x^n}{1-x} \to f(x) := \frac{1}{1-x} \quad \text{as} \quad n \to \infty.$$

Hence, for $\varepsilon > 0$,

$$|f(x) - s_n(x)| < \varepsilon \quad \Longleftrightarrow \quad \left|\frac{x^n}{1-x}\right| < \varepsilon.$$

Hence, if there exists $N \in \mathbb{N}$ such that $|f(x) - s_n(x)| < \varepsilon$ for all $n \ge N$ for all $x \in (0, 1)$, then we would get

$$\frac{|x|^N}{|1-x|} < \varepsilon \quad \forall x \in (0,1).$$

This is not possible, as $|x|^N/|1-x| \to \infty$ as $x \to 1$.

However, we have seen that the above series is dominated on [-a, a] for 0 < a < 1.

Example 6.15 The series $\sum_{n=1}^{\infty} (1-x)x^{n-1}$ is not uniformly convergent on [0, 1]; in particular, not dominated on [0, 1]. This is seen as follows: Note that

$$s_n(x) := \sum_{k=1}^n (1-x)x^{k-1} = \begin{cases} 1-x^n & \text{if } x \neq 1\\ 0 & \text{if } x = 1. \end{cases}$$

In particular, $s_n(x) = 1 - x^n$ for all $x \in [0, 1)$ and $n \in \mathbb{N}$. By Example 6.2, we know that $(s_n(x))$ converges to $f(x) \equiv 1$ pointwise, but not uniformly.

Remark 6.2 Note that if a series $\sum_{n=1}^{\infty} f_n$ converges uniformly to a function f on an interval J, then we must have

$$\beta_n := \sup_{x \in J} |s_n(x) - f(x)| \to 0 \text{ as } n \to \infty.$$

Here, s_n is the *n*-th partial sum of the series. Conversely, if $\beta_n \to 0$, then the series is uniformly convergent. Thus, if $\sum_{n=1}^{\infty} f_n$ converges to a function f on J, and if $\sup_{x \in J} |s_n(x) - f(x)| \neq 0$ as $n \to \infty$, then we can infer that the convergence is not uniform.

As an illustration, consider the Example 6.15. There we have

$$|s_n(x) - f(x)| = \begin{cases} x^n & \text{if } x \neq 1\\ 0 & \text{if } x = 1. \end{cases}$$

Hence, $\sup_{|x| \leq 1} |s_n(x) - f(x)| = 1$. Moreover, the limit function f is not continuous. Hence, the non-uniform convergence also follows from Theorem 6.6.

Exercise 6.4 Consider a series $\sum_{n=1}^{\infty} f_n$ and $a_n := \sup_{x \in J} |f_n(x)|$. Show that this series is dominated series if and only if $\sum_{n=1}^{\infty} a_n$ converges.

Next example shows that in Theorem 6.7, the condition that the *derived series* converges uniformly is not a necessary condition for the the conclusion.

Example 6.16 Consider the series $\sum_{n=0}^{\infty} x^n$. We know that it converges to 1/(1-x) for |x| < 1. It can be seen that the derived series $\sum_{n=1}^{\infty} nx^{n-1}$ converges uniformly for $|x| \le \rho$ for any $\rho \in (0, 1)$. This follows since $\sum_{n=1}^{\infty} n\rho^{n-1}$ converges. Hence,

$$\frac{1}{(1-x)^2} = \frac{d}{dx}\frac{1}{1-x} = \sum_{n=1}^{\infty} nx^{n-1} \quad \text{for} \quad |x| \le \rho.$$

The above relation is true for x in any open interval $J \subseteq (-1, 1)$; because we can choose ρ sufficiently close to 1 such that $J \subseteq [-\rho, \rho]$. Hence, we have

$$\frac{1}{(1-x)^2} = \sum_{n=1}^{\infty} nx^{n-1} \quad \text{for} \quad |x| < 1.$$

We know that the given series is not uniformly convergent (see, Example 6.14). \Box

Remark 6.3 We have seen that if $\sum_{n=1}^{\infty} f_n(x)$ is a dominated series on an interval J, then it converges uniformly and absolutely, and that an absolutely convergent series need not be a dominated series. Are there series which converge uniformly but not dominated. The answer is in affirmative. Look at the following series:

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}, \quad x \in [0,1].$$

Since $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent, the given series is not absolutely convergent at x = 1 and hence it is not a dominated series. However, the given series converges uniformly on [0, 1].

6.3 Additional Exercises

- 1. Let $f_n(x) = \frac{x^2}{(1+x^2)^n}$ for $x \ge 0$. Show that the series $\sum_{n=1}^{\infty} f_n(x)$ does not converge uniformly.
- 2. Let $f_n(x) = \frac{x}{1+nx^2}$, $x \in \mathbb{R}$. Show that (f_n) converge uniformly, whereas (f'_n) does not converge uniformly. Is the relation $\lim_{n \to \infty} f'_n(x) = \left(\lim_{n \to \infty} f_n(x)\right)'$ true for all $x \in \mathbb{R}$?
- 3. Let $f_n(x) = \frac{\log(1+n^3x^2)}{n^2}$, and $g_n(x) = \frac{2nx}{1+n^3x^2}$ for $x \in [0,1]$. Show that the sequence (g_n) converges uniformly to g where g(x) = 0 for all $x \in [0,1]$. Using this fact, show that (f_n) also converges uniformly to the zero function on [0,1].

4. Let
$$f_n(x) = \begin{cases} n^2 x, & 0 \le x \le 1/n, \\ -n^2 x + 2n, & 1/n \le x \le 2/n, \\ 0, & 2/n \le x \le 1. \end{cases}$$

Show that (f_n) does not converge uniformly of [0, 1]. [*Hint*: Use termwise integration.]

- 5. Suppose (a_n) is such that $\sum_{n=1}^{\infty} a_n$ is absolutely convergent. Show that $\sum_{n=1}^{\infty} \frac{a_n x^{2n}}{1+x^{2n}}$ is a dominated series on \mathbb{R} .
- 6. Show that for each p > 1, the series $\sum_{n=1}^{\infty} \frac{x^n}{n^p}$ is convergent on [-1, 1] and the limit function is continuous.
- 7. Show that the series $\sum_{n=1}^{\infty} \{(n+1)^2 x^{n+1} n^2 x^n\}(1-x)$ converges to a continuous function on [0, 1], but it is not dominated.
- 8. Show that the series $\sum_{n=1}^{\infty} \left[\frac{1}{1+(k+1)x} \frac{1}{1+kx} \right]$ is convergent on [0,1], but not dominated, and

$$\int_0^1 \sum_{n=1}^\infty \left[\frac{1}{1+(k+1)x} - \frac{1}{1+kx} \right] dx = \sum_{n=1}^\infty \int_0^1 \left[\frac{1}{1+(k+1)x} - \frac{1}{1+kx} \right] dx$$

9. Show that
$$\int_0^1 \sum_{n=1}^\infty \frac{x}{(n+x^2)^2} \, dx = \frac{1}{2}.$$