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Sequence and Series of Functions

6.1 Sequence of Functions

6.1.1 Pointwise Convergence and Uniform Convergence

Let J be an interval in R.

Definition 6.1 For each n € N, suppose a function f, : J — R is given. Then we

say that a a sequence (f,) of functions on J is given.

More precisely, a sequence of functions on J is a map F' : N — F(J), where
F(J) is the set of all real valued functions defined on J. If f,, :== F(n) for n € N,
then we denote F' by (f,), and call (f,,) as a sequence of functions. O

Definition 6.2 Let (f,) be a sequence of functions on an interval J.

(a) We say that (f,) converges at a point xy € J if the sequence (f,(zg)) of
real numbers converges.

(b) We say that (f,,) converges pointwise on J if (f,,) converges at every point
in J, i.e., for each x € J, the sequence (f,(x)) of real numbers converges. O

Definition 6.3 Let (f,) be a sequence of functions on an interval J. If (f,) con-
verges pointwise on J, and if f: J — R is defined by f(z) = lim, e fn(x), € J,
then we say that (f,) converges pointwise to f on J, and f is the pointwise
limit of (f,), and in that case we write

fn — f pointwise on J.

O

Thus, (f,) converges to f pointwise on J if and only if for every e > 0 and for
each x € J, there exists N € N (depending, in general, on both ¢ and x) such that
|fn(x) — f(x)| < e foralln > N.

Ezxercise 6.1 Pointwise limit of a sequence of functions is unique.
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164 Sequence and Series of Functions M.T. Nair

Example 6.1 Consider f, : R — R defined by

fola) = singbnx)’ s ER

and for n € N. Then we see that for each z € R,

fa@)|<:  VneN

n
Thus, (f,) converges pointwise to f on R, where f is the zero function on R, i.e.,
f(z) =0 for every z € R. O

Suppose (fy,) converges to f pontwise on J. As we have mentioned, it can happen
that for ¢ > 0, and for each x € J, the number N € N satisfying |f,(z) — f(z)| < ¢
Vn > N depends not only on € but also on the point x. For instance, consider the
following example.

Example 6.2 Let f,(z) = 2" for x € [0,1] and n € N. Then we see that for
0<z<1, fo(x) = 0, and f,(1) = 1 as n — oo. Thus, (f,) converges pointwise to

a function f defined by
0, x#1,
f(x)—{ 1, z=1.
In particular, (f,) converges pointwise to the zero function on [0, 1).

Note that if there exists N € N such that |2"| < € for all n > N and for all
x € [0,1), then, letting z — 1, we would get 1 < &, which is not possible, had we
chosen ¢ < 1. ]

For ¢ > 0, if we are able to find an N € N which does not vary as x varies
over J such that |f,(z) — f(x)| < e for all n > N, then we say that (f,) converges
uniformly to f on J. Following is the precise definition of uniform convergence of
(fn) to f on J.

Definition 6.4 Suppose (f,) is a sequence of functions defined on an interval J.
We say that (f,) converges to a function f uniformly on J if for every ¢ > 0
there exists N € N (depending only on ¢) such that

|fu(z) — f(z)] <€ Vn>N and VzeJ,
and in that case we write

fn— f uniformly on J.

We observe the following;:

e If (f,) converges uniformly to f, then it converges to f pointwise as well.
Thus, if a sequence does not converge pointwise to any function, then it can not
converge uniformly.
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e If (f,) converges uniformly to f on .J, then (f,) converges uniformly to f on
every subinterval Jy C J.

In Example 6.2 we obtained a sequence of functions which converges pointwise
but not uniformly. Here is another example of a sequence of functions which con-
verges pointwise but not uniformly.

Example 6.3 For each n € N, let

nx
14 n2z?’

fn(z) x €[0,1].

Note that f,(0) = 0, and for = # 0, f,(x) — 0 as n — oco. Hence, (f,,) converges
poitwise to the zero function. We do not have uniform convergence, as f,(1/n) = 1/2
for all n. Indeed, if (f,,) converges uniformly, then there exists N € N such that

lfn(z) <e  VYaelo1].

In particular, we must have
1
S =IN(/N)<e  vVaelo)

This is not possible if we had chosen ¢ < 1/2. 4

Example 6.4 Consider the sequence (f,,) defined by
fn(z) = tan" Y (nz), x € R.

Note that f,(0) = 0, and for z # 0, f,(x) — 7/2 as n — oo. Hence, the given
sequence (fy,) converges pointwise to the function f defined by

0, x =0,
ﬂw:{wﬂ,x#&

However, it does not converge uniformly to f on any interval containing 0. To
see this, let J be an interval containing 0 and € > 0. Let N € N be such that
|fn(x) — f(x)| < e for all n > N and for all z € J. In particular, we have

lfn(x) —m/2] <e Vo e J\{0}.

Letting x — 0, we have 7/2 = |fn(0) — m/2| < & which is not possible if we had
chooses € < 7/2. O

Now, we give a theorem which would help us to show non-uniform convergence
of certain sequence of functions.

Theorem 6.1 Suppose f, and f are functions defined on an interval J. If there
exists a sequence (x,) in J such that |fn(zy) — f(zn)| # 0, then (fn) does not
converge uniformly to f on J.
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Proof. Suppose (f,) converges uniformly to f on J. Then, for every € > 0, there
exists N € N such that

|fn(z) — f(x)|<e Vn>N, Vzel

In particular,

Hence, |fn(2n) — f(zn)| — 0 as n — oo. This is a contradiction to the hypothesis
that |fn(xn) — f(xn)| # 0. Hence our assumption that (f,) converges uniformly to
fon Jis wrong. |

In the case of Example 6.2, taking x,, = n/(n + 1), we see that

Fnlan) = <ni 1> - é'

Hence, by Theorem 6.1, (f,) does not converge to f = 0 uniformly on [0, 1).

In Example 6.3, we may take z,, = 1/n, and in the case of Example 6.4, we may
take z,, = w/n, and apply Theorem 6.1.

Ezxercise 6.2 Suppose f, and f are functions defined on an interval J. If there
exists a sequence (z,) in J such that [f,(z,) — f(zn)] # 0, then (f,) does not
converge uniformly to f on J. Why?

[Suppose ay, := [fn(xn) — f(zn)] # 0. Then there exists § > 0 such that |a,| > §
for infinitely many n. Now, if f,, — f uniformly, there exists N € N such that
|fn(x) — f(x)| < 6/2 for all n > N. In particular, |a,| < §/2 for all n > N. Thus,
we arrive at a contradiction.] <

Here is a sufficient condition for uniform convergence. Its proof is left as an
exercise.

Theorem 6.2 Suppose f, for n € N and f are functions on J. If there exists a
sequence () of positive reals satisfying o, — 0 as n — oo and

|fn(z) — f@)| <a, VneN, Vzel
then (fn) converges uniformly to f.

Ezxercise 6.3 Supply detailed proof for Theorem 6.2. <

Here are a few examples to illustrate the above theorem.
Example 6.5 For each n € N, let

2nx

-l A U

fn(z)
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Since 14 n*2z? > 2n2x (using the relation a? + b> > 2ab), we have

2nx 1
0< < = —.
Thus, by Theorem 6.2, (f,,) converges uniformly to the zero function. O

Example 6.6 For each n € N, let
1 4,2
fu(z) = Elog(l +ntz?), z € [0,1].
Then we have )
0 < fu(z) < —log(1 +nY)y=1a, VneN.
n
Taking g(t) := t% log(1 +t*) for t > 0, we see, using L’Hospital’s rule that

) . 4¢3
A g(t) = i o =

In particular,

1
lim — log(1 + nt) = 0.

n—oo N

Thus, by Theorem 6.2, (f,,) converges uniformly to the zero function. O

We may observe that in Examples 6.2 and 6.4, the limit function f is not con-
tinuous, although every f,, is continuous. This makes us to ask the following:

Suppose each f, is a continuous function on J and (f,,) converges to f pointwise.

e If f is Riemann integrable, then do we have

/a " f(e)de = 1im. /  fu(a)da

for every [a,b] C J?

e Suppose each f, is continuously differentiable on J. Then, is the function f
differentiable on J? If f is differentiable on J, then do we have the relation

%f(:c) = lim ifn(a:)dxr?

n—oo dx

The answers to the above questions need not be affirmative as the following
examples show.

Example 6.7 For each n € N, let

fa(@)=nz(1-2*)",  0<az<l
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Then we see that
lim f,(x)=0 Vael0,1].

n—oo

Indeed, for each z € (0, 1),

fori(z) _ o oy (ntld
Sy = (U

Since z(1—22) < 1 for x € (0, 1), we obtain li_>m fn(z) = 0 for every x € [0, 1]. But,
n—oo

>—>m(1—m2) as n — oo.

! n 1
/ fn(x)dx = — = as n— 0.
0 m+2 2

Thus, limit of the integrals is not the integral of the limit. |
Example 6.8 For each n € N, let

sin(nz)

N

z € R.

falz) =

Then we see that
ILm fo(z) =0 Va2 e|0,1].

But, f!(x) = +/ncos(nz) for all n € N, so that
f1(0)=+yn—o00 as n— .

Thus, limit of the derivatives is not the derivative of the limit. O

6.1.2 Continuity and uniform convergence

Theorem 6.3 Suppose (fy,) is a sequence of continuous functions defined on an
interval J which converges uniformly to o function f. Then f is continuous on J.

Proof. Suppose xg € J. Then for any x € J and for any n € N,

() = f(xo)| < [f(2) = fu(@)[ + | ful@) = fu(zo)| + [fn(z0) — flzo)|. (%)

Let € > 0 be given. Since (fy,) converges to f uniformly, there exists N € N such
that
|fn(z) — f(x)] <e/3 Vn>N,Vxel

Since fy is continuous, there exists § > 0 such that
[fn(@) — fn(zo)| < /3 whenever |z — @] < 6.
Hence from (), we have
(@) = fxo)| <|f(2) = (@) + v (@) = fn (o) + [ fa(zo) — flwo)| <&

whenever |x — zg| < 0. Thus, f is continuous at xg. This is true for all ¢ € J.
Hence, f is a continuous function on .J. 1
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6.1.3 Integration-Differentiation and uniform convergence

Theorem 6.4 Suppose (f,) is a sequence of continuous functions defined on an in-
terval [a, b] which converges uniformly to a function f on [a,b]. Then f is continuous
and

lim fn dx_/f

n—o0

Proof. We already know by Theorem 6.3 that f is a continuous function. Next

we note that
/fn dx—/f )dx /]fn — f(z)|dx.

Let € > 0 be given. By uniform convergence of (f,) to f, there exists N € N such
that

|fn(x) = f(x)| <e/(b—a) Vn>N,Vx€la,b].

Hence, for all n > N,
/ |fn(z) — fx)|dx < e.

/ fn(x)dz —/ f(x)dx
This completes the proof. |

Theorem 6.5 Suppose (f,) is a sequence of continuously differentiable functions
defined on an interval J such that

(i) (f}) converges uniformly to a function, and
(i1) (fn(a)) converges for some a € J.

Then (fn) converges to a continuously differentiable function f and

nh_}ngo fi(x)=f'(z) Vxel

Proof. Let g(x) := nhﬁrgo fr(x) for x € J, and a := nhﬁrgo fn(a). Since the conver-

gence of (f!) to g is uniform, by Theorem 6.4, the function g is continuous and

nli_}ngo/z f;l(t)dt:/mg(t)dt.

Let p(z) := [7g( dt x € J. Then ¢ is differentiable and ¢'(z) = g(z) for x € J.

a

But, fa ! (t)dt = fn(x) — fn(a). Hence, we have
Tim [f(z) ~ fula)] = pla)

Thus, (f,) converges pointwise to a differentiable function f defined by f(z) =
o(z) + a, xz € J, and (f],) converges to f'. 1

Remark 6.1 In Theorem 6.5, it an be shown that the convergence of the sequence
(fn) is uniform. ¢
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6.2 Series of Functions

Definition 6.5 By a series of functions on a interval J, we mean an expression

of the form - -
Z fn or Z fn(x)y
n=1 n=1

where (f,) is a sequence of functions defined on J. O

Definition 6.6 Given a series >, fn(z) of functions on an interval J, let
n
sul@) =3 filw), e
i=1
Then sy, is called the n-th partial sum of the series Y~ fn. 0
Definition 6.7 Consider a series Y > | fn(z) of functions on an interval J, and let
sn(z) be its n-th partial sum. Then we say that the series Y 7 | fn(z)
(a) converges at a point zy € J if (s,) converges at xo,
(b) converges pointwise on J if (s,) converges pointwise on .J, and

(c) converges uniformly on J if (s,) converges uniformly on J. O

The proof of the following two theorems are obvious from the statements of
Theorems 6.4 and 6.5 respectively.

Theorem 6.6 Suppose (fy,) is a sequence of continuous functions on J. If Y 7 | fn(x)
converges uniformly on J, say to f(x), then f is continuous on J, and for [a,b] C J,

b S b
/af(x)dx:nz::l/a fulz)da.

Theorem 6.7 Suppose (fy) is a sequence of continuously differentiable functions on
J. If > fh(z) converges uniformly on J, and if Y7, fo(x) converges at some
point xo € J, then Y~ | fn(x) converges to a differentiable function on J, and

- (Z fn(fv)> =3 Ao
n=1

n=1

Next we consider a useful sufficient condition to check uniform convergence. First
a definition.

Definition 6.8 We say that > 2 f, is a dominated series if there exists a
sequence («y,) of positive real numbers such that |f,(z)| < ay, for all z € J and for
all n € N, and the series >~ ; a;, converges. U
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Theorem 6.8 A dominated series converges uniformly.

Proof. Let Y > | fn be a dominated series defined on an interval J, and let (o)
be a sequence of positive reals such that

(i) |fu(x)| < ay, for all n € N and for all z € J, and

(i) -2, ay converges.
Let sp(x) = >, fi(z), n € N. Then for n > m,

> filw)

i=m-+1

n

< D @< ) ai=o0n—om,

i=m-+1 i=m-+1

|sn(2) = sm(2)| =

where o, = Y ;_; ap. Since Y 7 o, converges, the sequence (o) is a Cauchy

sequence. Now, let € > 0 be given, and let N € N be such that
|on — om| <& VYn,m > N.

Hence, from the relation: |s,(z) — sy (z)| < 0y, — 04, we have

|sn(z) — sm(z)] <e ¥n,m > N,Vz e J

This, in particular implies that {s,(z)} is also a Cauchy sequence at each = € J.
Hence, {s,(x)} converges for each z € J. Let f(z) = limy—00 Sn(x), x € J. Then,
we have

|f(z) = sm(x)| = lim [sp(z) — sm(x)| <e Vm > N,Vzel

n—oo

Thus, the series >, fn converges uniformly to f on J. 1

Example 6.9 The series | 2% and 7 | *23% are dominated series, since

COS N 1 sinnx 1
) 2 ‘ > ) — S -5 Vn S N
n n n n
and > 7, 7712 is convergent. O

Example 6.10 The series )~ ,2" is a dominated series on [—p, p| for 0 < p < 1,
since |2"| < p" for all n € N and Y7, p" is convergent. Thus, the given series is a
dominated series, and hence, it is uniformly convergent. O

Example 6.11 Consider the series > 2, W on R. Note that

s S (aym)

(o]
1 . L . . .
and g —375 converges. Thus, the given series is dominated series, and hence it
n

n=1
converges uniformly on R. O
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Example 6.12 Consider the series } /¢ | ;=% for x € [¢,00), ¢ > 0. Note that
T T . 1 < 1
1+n222 ~ n222  ~ n2zx ~ nZc

o0
and g — converges. Thus, the given series is dominated series, and hence it
n
n=1
converges uniformly on [¢, 00). O

n
Example 6.13 The series > >~ (xe*“:) is dominated on [0, 00): To see this, note
that

n

(:ce_”’>n - T nt
e = (nx)*/n!  nn

. !
and the series > > | I converges.

It can also be seen that |xe™?| < 1/2 for all z € [0, 00). O

Example 6.14 The series > oo, z" ! is not uniformly convergent on (0,1); in
particular, not dominated on (0,1). This is seen as follows: Note that

S 1
Sp(x) ::Z:z i — f(z) = as n — oo.
k=1

Hence, for € > 0,

n

@) = sm(@)| <& = ] -

1—z

Hence, if there exists N € N such that |f(x) — s,(x)| < € for all n > N for all
x € (0,1), then we would get
2|

1 — |

<e VYxe(0,1).

This is not possible, as |z|V /|1 — 2| = oo as z — 1.
However, we have seen that the above series is dominated on [—a, a] for 0 < a < 1.

Il
Example 6.15 The series Y > (1 — 2)2™ ! is not uniformly convergent on [0, 1];
in particular, not dominated on [0, 1]. This is seen as follows: Note that

" _ 1—a®  if z#1
snlw) =Y _(1—-2)at"! = { 0 if i 1.
k=1

In particular, s,(x) =1—2a" for all € [0,1) and n € N. By Example 6.2, we know
that (s,(x)) converges to f(z) = 1 pointwise, but not uniformly. O
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Remark 6.2 Note that if a series > ° | f, converges uniformly to a function f on
an interval J, then we must have
Brn :=sup|sp(x) — f(z)] >0 as n — co.
zeJ

Here, s, is the n-th partial sum of the series. Conversely, if 3, — 0, then the series
is uniformly convergent. Thus, if > 7, f, converges to a function f on J, and if
SUp,c|Sn(z) — f(z)] # 0 as n — oo, then we can infer that the convergence is not
uniform.

As an illustration, consider the Example 6.15. There we have
I if z#1
sale) - F@1={ 5"

Hence, sup|y<; [sn(2) — f(2)| = 1. Moreover, the limit function f is not continuous.
Hence, the non-uniform convergence also follows from Theorem 6.6. ¢

z=1.

Exercise 6.4 Consider a series Y - f, and a, := sup,c s |fn(x)]. Show that this
series is dominated series if and only if Y 2 | a,, converges. <

Next example shows that in Theorem 6.7, the condition that the derived series
converges uniformly is not a necessary condition for the the conclusion.

Example 6.16 Consider the series 2 j 2™. We know that it converges to 1/(1 — x)
for |z| < 1. It can be seen that the derived series > oo ; nz"~! converges uniformly
for |z| < p for any p € (0,1). This follows since > °° | np"~! converges. Hence,

1
(1—x)

The above relation is true for x in any open interval J C (—1,1); because we can
choose p sufficiently close to 1 such that J C [—p, p]. Hence, we have

d 1
— _ -1
5= 1 g nx" for |z| < p.

n=1

1 o
m = Zniﬁnil for |$’ < 1.
n=1

We know that the given series is not uniformly convergent (see, Example 6.14). O

Remark 6.3 We have seen that if >~ | f,(z) is a dominated series on an interval
J, then it converges uniformly and absolutely, and that an absolutely convergent
series need not be a dominated series. Are there series which converge uniformly
but not dominated. The answer is in affirmative. Look at the following series:

[e.9] {[‘n
Z(—1)"+1;, z € [0,1].
n=1

o0
1
Since E — is divergent, the given series is not absolutely convergent at x = 1 and
n
n=1

hence it is not a dominated series. However, the given series converges uniformly

on [0, 1]. ¢
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6.3 Additional Exercises

2

oo
ﬁ for x > 0. Show that the series an(x) does not
x

converge uniformly.

1. Let fn(z) =

n=1

2. Let fn(x) , © € R. Show that (f,,) converge uniformly, whereas (f,)

" 1+ na? )
does not converge uniformly. Is the relation lim f(z) = ( lim fn(m)) true
for all z € R?

log(1 + n?z? 2
3. Let fn(z) = og(;n:v), and g, (x) = % for x € [0,1]. Show that
the sequence (g,) converges uniformly to g where g(x) = 0 for all z € [0,1].

Using this fact, show that (f,,) also converges uniformly to the zero function

on [0, 1].
n’x, 0<z<1/n,
4. Let fn(x) =< —n2z+ 2n, 1/n<x<2/n,
0, 2/n <z < 1.

Show that (f,,) does not converge uniformly of [0, 1].
[Hint: Use termwise integration. |

oo 2n
. . anx
5. Suppose (ay,) is such that Y~ 7 | a,, is absolutely convergent. Show that ngl 1 i o

is a dominated series on R.

> ..n
x
6. Show that for each p > 1, the series E > is convergent on [—1,1] and the
n=1
limit function is continuous.

o0
7. Show that the series Z{(n—i— 1)22" T —n22"}(1—x) converges to a continuous
n=1
function on [0, 1], but it is not dominated.
1 1
1+ (k+1)z 1+kz

8. Show that the series Z [ | is convergent on [0, 1], but
n=1

not dominated, and

1 1 1 — [ 1 1
/0 ;[1+(k+1)x_1+kx]dx:;/o Sy ik g

100
T 1
. Show that E ———dr = —.
9. Show a/on:l(n+x2)2 T 5




