
Chapter 7

Sequences of Functions

Sequences of functions play in important role approximation theory. They can be
used to show a solution of a differential equation exists. We recall in Chapter Three
we define a sequence to be a function whose domain is the natural numbers. Thus,
if fn(x) : D → R for each n ∈ N, then {fn}n∈N is sequence of functions. We need
a notion of convergence.

Definition 7.1. We say the sequence of functions {fn}n∈N defined on a set D
converges pointwise, if and only if for each x ∈ D, the sequence of real numbers
{fn(x)}n∈N converges. We set f(x) = lim

n→∞
fn(x).

We would like to know what f inherits from the fn. In general, the answer is
not much.

Example 7.2. Consider fn(x) = xn on [0, 1] and n ∈ N. Note that fn ∈ C∞(0, 1)
for all n ∈ N. However, the limit

f(x) = lim
n→∞

fn(x) =

�

0 x ∈ [0, 1)
1 x = 1

is not even continuous on [0, 1].

Example 7.3. Consider fn(x) =
sinnx√

n
on R and n ∈ N. Once again fn ∈ C∞(R)

for all n ∈ N and the pointwise limit is f(x) = 0 is also infinitely differentiable.
However, f ′

n(x) =
√
n cosnx has no limit and certainly does not converge to f ′(x) =

0. Thus, we see

( lim
n→∞

fn(x))
′ 6= lim

n→∞
f ′
n(x).

Example 7.4. Back in Chapter One in Example 1.5 we considered the sequence of

functions given by fn(x) = nxe−nx2

on [0, 1]. One checks the limit is f(x) = 0. Once
again both the sequence and the limit have infinitely many derivatives. However,

lim
n→∞

Z 1

0

fn(x)dx = lim
n→∞

−1

2
e−nx2

�

�

�

1

0
=

1

2
,
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while
Z 1

0

lim
n→∞

fn(x)dx =

Z 1

0

lim
n→∞

0 dx = 0.

Thus

lim
n→∞

Z 1

0

fn(x)dx 6=
Z 1

0

lim
n→∞

fn(x)dx.

So what does f inherit from fn? We need a stronger form of convergence.

Definition 7.5. A sequence of functions {fn}n∈N on D is uniformly convergent on
D if and only if, for all ǫ > 0, there exists a N ∈ N such that |fn(x)− f(x)| < ǫ for
all x ∈ D and n ≥ N .

Lemma 7.6. A sequence of functions {fn}n∈N on D does not converge uniformly to
its pointwise limit f if there exists a ǫ0 > 0 and a subsequence {fnk

}k∈N of {fn}n∈N

and a sequence {xk}n∈N ⊂ D such that |fnk
(xk)− f(xk)| ≥ ǫ0 for all k ∈ N.

Proof. In logic notation uniform convergence is

(∀ǫ > 0)(∃N ∈ N)(∀x ∈ D)(∀n ≥ N)(|f(x) − fn(x)| < ǫ).

The negation of this is

(∃ǫ0 > 0)(∀N ∈ N)(∃x ∈ D)(∃n ≥ N)(|f(x) − fn(x)| ≥ ǫ0).

That is

(∃ǫ0 > 0)(∀k ∈ N)(∃xk ∈ D)(∃nk ≥ k)(|f(xk)− fnk
(xk)| ≥ ǫ0)

as required. �

Example 7.7. Show that fn(x) = xn on [0, 1] and n ∈ N does not converge
uniformly on [0, 1].

Proof. We construct the sequence {xk} to converge to the trouble spot. Here, the
trouble is at x = 1 (a graph of several fn will help to see this). We pick ǫ0 = 1/2,
nk = k and xk = (1/2)1/k. Then

|f(xk)− fnk
(xk)| = |fnk

(xk)| =
1

2
≥ ǫ0,

and {fn}n∈N does not converge uniformly on [0, 1]. �

Example 7.8. Show that fn(x) = xn on [0, 1/2] and n ∈ N does converge uniformly
on [0, 1/2].

Proof. We just need to show that the N in the definition of convergence does not
depend on x. The pointwise limit f = 0. We calculate

|fn(x) − f(x)| = |fn(x) − 0| ≤
�

1

2

�n

.

Thus, given any ǫ > 0 we choose N ∈ N so that (1/2)n < ǫ for all n ≥ N (how do
we do this?). Then |fn(x) − f(x)| < ǫ for all x ∈ [0, 1/2] and n ≥ N . �

Example 7.9. Show that the sequence of functions given by fn(x) = nxe−nx2

on
[0, 1] and n ∈ N does not converge uniformly on [0, 1].
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Proof. A graph of the fn is given in Example 1.5. The peak of the curves (the

maximum of fn occurs at x = 1/
√
2n, and fn(1/

√
2n) =

p

n
2 e

−1/2. This suggest

choosing ǫ0 equal to any positive number, nk = k, xk = 1/
√
2k. Then

|fnk
(xk)− f(xk)| = |fnk

(xk)| =
r

k

2
e−1/2

which tends to infinity. �

We might expect uniform convergence to imply f inherits the properties of fn.
This is not quite true.

Example 7.10. Consider again fn(x) = sinnx√
n

on R with n ∈ N. The pointwise

limit is f(x) = 0. Moreover, the convergence is uniform since

|fn(x)− f(x)| = |fn(x) − 0| ≤ 1√
n

which can be made small independently of x. However, recall that f ′
n does not

converge to f ′.

Example 7.11. The sequence of functions fn(x) = x/n on R, n ∈ N, does not
converge uniformly on R. Indeed, set ǫ0 = 1, nk = k, and xk = k. Then |fnk

(xk)−
f(xk)| = |1− 0| ≥ ǫ. However, f inherits the continuity of the fn and f ′

n converges
to f ′.

7.1. Preservation Theorems

In this section we find conditions on the sequence {fn}n∈N so that its properties
are retained by the pointwise limit f .

Theorem 7.12. Let D be any nonempty subset of R and suppose fn ∈ C(D) for
each n ∈ N. If {fn}n∈N converges uniformly to f on D, then f is continuous on
D.

Proof. Since fn converges uniformly on D, for any ǫ > 0, there exists N(ǫ) such
that

(7.1) |fn(x) − f(x)| < ǫ

for all x ∈ D and n ≥ N . Since each fn is continuous on D, for any ǫ > 0, x0 ∈ D,
and n ∈ N, there exists δ(ǫ, x0, n) such that

(7.2) |fn(x) − fn(x0)| < ǫ

for all x ∈ D and |x− x0| < δ.

We need to show f is continuous on D. Let ǫ > 0 and x0 ∈ D. Equation (7.1)
shows the existence of a N0 ∈ N so that

|fn(x) − f(x)| < ǫ

3

for all n ≥ N0 and all x ∈ D. Equation (7.2) provides a δ(ǫ, x0, N0) such that

|fN0(x)− fN0(x0)| <
ǫ

3
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for all x ∈ D, |x− x0| < δ. Thus

|f(x)− f(x0)| = |f(x)− fN0(x) + fN0(x)− fN0(x0) + fN0(x0)− f(x0)|
≤ |f(x)− fN0(x)| + |fN0(x)− fN0(x0)|+ |fN0(x0)− f(x0)|
<

ǫ

3
+

ǫ

3
+

ǫ

3
= ǫ

for all x ∈ D with |x− x0| < δ, and hence f ∈ C(D). �

Example 7.13. Show (again) that fn(x) = xn on [0, 1], n ∈ N, does not converge
uniformly on [0, 1].

Proof. We note (again) that the fn are continuous. Since the pointwise limit f is
not continuous, the convergence cannot be uniform. �

Example 7.14. Consider

fn(x) =

�

1
n x ∈ Q

0 x ∈ Qc

for n ∈ N. The pointwise limit is f = 0, and it is easily seen that fn → f uniformly
on [0, 1]. While the fn are discontinuous the limit f is smooth. Thus uniform
convergence preserves good properties, not bad, [6].

Theorem 7.15. Suppose fn ∈ R[a, b] for all n ∈ N. Furthermore, suppose {fn}n∈N

converges uniformly to f on [a, b]. Then f ∈ R[a, b] and

(7.3) lim
n→∞

Z b

a

fn(x) dx =

Z b

a

lim
n→∞

fn(x) dx.

Proof. We first show f is integrable. Let ǫ > 0 be given. Choose N ∈ N so that

|fn(x)− f(x)| < ǫ

3(b− a)

for all n ≥ N and x ∈ [a, b]. It follows that U(P, f − fn) < ǫ/3 and L(P, f − fn) >
−ǫ/3 for any partition P of [a, b]. Since FN is Riemann integrable, there exists a
partition of [a, b] so that

U(P, fN )− L(P, fN ) < ǫ/3.

For any two bounded functions h, g and any partition, note that

U(P, h+ g) ≤ U(P, h) + U(P, g), L(P, h+ g) ≥ L(P, h) + L(P, g).

Thus

U(P, f)− L(P, f) ≤ U(P, f − fN ) +
�

U(P, fN )− L(P, fN )
�

− L(P, f − fN )

< 3
ǫ

3
.

Now that we know f is Riemann integrable, a simple calculation shows
�

�

�

�

�

Z b

a

fn(x) dx −
Z b

a

f(x) dx

�

�

�

�

�

≤
Z b

a

|fn(x) − f(x)| dx <

Z b

a

ǫ

3(b− a)
< ǫ

for all n ≥ N and (7.3) follows. �
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If we assume that f is Riemann integrable, we may drop the uniform conver-
gence.

Theorem 7.16. (Bounded-Convergence Theorem) Let fn ∈ R[a, b] for all n ∈ N

and suppose the pointwise limit f is also Riemann integrable on [a, b]. If M exists
so that |fn(x)| ≤ M for all x ∈ [a, b] and n ∈ N, then

lim
n→∞

Z b

a

fn(x) dx =

Z b

a

lim
n→∞

fn(x) dx.

Proof. For a proof at the level of this book see [5]. �

Example 7.17. Note that the bounded convergence theorem applies to the se-
quence of functions fn(x) = xn on [0, 1] while Theorem 7.15 does not.

Theorem 7.18. Suppose, for each n ∈ N,

i) fn ∈ C1(I)

ii) lim
n→∞

fn(x0) exists for some x0 ∈ I.

iii) {f ′
n}n∈N converges uniformly on I.

Then

(7.4) lim
n→∞

f ′
n(x) =

�

lim
n→∞

fn(x)
�′

.

Proof. Suppose f ′
n converge uniformly on I to g. By Theorem 7.12 g is continuous

on I. Moreover, by the Fundamental Theorem of Calculus

fn(x) = fn(x0) +

Z x

x0

f ′
n(s) ds.

Theorem 7.15 applies to f ′
n, and we therefore conclude fn(x) converges pointwise

to, say, f . In fact, the previous equation shows

f(x) = f(x0) +

Z x

x0

g(s) ds.

The Fundamental Theorem of Calculus applies again, and we see that f ′ = g. This
is (7.4). �
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7.2. Homework

Exercise 7.1. This is the same as Problem 6.27. Work it again using on of the
theorems in this chapter. Suppose f is continuous on [0, 1]. Define gn(x) = f(xn)

for n ∈ N. Prove that lim
n→∞

Z 1

0

gn(x) dx = f(0).

Exercise 7.2. Give an example of a sequence of continuous functions which con-
verge to a continuous function but where the convergence is not uniform.

Exercise 7.3. Give an example of a sequence of functions discontinuous everywhere
which converge uniformly to a continuous function.

Exercise 7.4. Let fn(x) = 1/(nx+1) and gn(x) = x/(nx+1) for x ∈ (0, 1). Show
that {fn}n∈N does not converges uniformly on (0, 1), but {gn}n∈N does converge
uniformly on (0, 1).

Exercise 7.5. Show that fn(x) = sinn(x) does not converge uniformly on [0,π/2].

Exercise 7.6. Let {fn}n∈N be a sequence of continuous functions on a nonempty
set E such that fn(x) → f(x) uniformly on E as n → ∞, and let {xn}n∈N be a
sequence in E converging to an x ∈ E. Does it follow that fn(xn) converges to
f(x)?

Exercise 7.7. Consider the following functions defined for x ≥ 0

(a)
xn

n
,

(b)
xn

n+ xn
,

(c)
xn

1 + xn
,

(d)
x

n
e−x/n.

Discuss the convergence and the uniform convergence of these sequences and the
continuity of the limit functions. In the case on nonuniform convergence consider
the sequences on an appropriate interval in E.

Exercise 7.8. Prove the following result. If {fn}n∈N is uniformly convergent on a
set D and each fn is bounded, then fn is uniformly bounded. That is, there exists
a M such that |fn(x)| ≤ M for all x ∈ D and n ∈ N. Use this result to give another
proof that the sequence in Example 7.9 does not converge uniformly.

Exercise 7.9. Prove that {fn}n∈N converges uniformly on a set D if {Mn}n∈N

exists such that Mn → 0 monotonically as n → ∞ and, for all x ∈ D, |fn(x) −
f(x)| ≤ Mn .

Exercise 7.10. Let fn(x) = x + 1/n on R. Show that fn converges uniformly on
R, but f2

n does not.

Exercise 7.11. Suppose {fn}n∈N and {gn}n∈N converge uniformly on a set D.

(a) Show that {fn ± gn}n∈N converges uniformly on D.
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(b) Show that in general {fn gn}n∈N does not converge uniformly on D.

(c) If each fn and gn are bounded, show that {fngn}n∈N converges uniformly on
D.

Exercise 7.12. If 0 < a < 2, show that lim
n→∞

Z 2

a

e−nx2

dx = 0. What happens if

a = 0?

Exercise 7.13. Show that fn =
p

x2 + 1/n2 converges uniformly to |x| on R.

[Hint: Rationalize to show |fn(x)−
√
x2| ≤ 1/n for each n.

Exercise 7.14. If fn converges uniformly to f on a set E and each fn is continu-
ous, prove f is continuous. Show that the statement if false if either the uniform
convergence or the continuity of the fn are dropped.

Exercise 7.15. Suppose that f : R → R is uniformly continuous on R and for
n ∈ N, let fn(x) = f(x + 1/n) for x ∈ R. Show that {fn}n∈N converges uniformly
to f on R.

Exercise 7.16. Prove the Monotone Convergence Theorem. Let {fn}n∈N be a
sequence of monotone increasing Riemann integrable functions. That is, f1(x) ≤
f2(x) ≤ . . . ≤ fn(x) . . . for all x ∈ [a, b]. If the pointwise limit f is Riemann

integrable, then lim
n→∞

Z b

a

fn(x) dx =

Z b

a

f(x) dx.

Exercise 7.17. Prove Cauchy’s Theorem for sequences of functions: a sequence of
function {fn}n∈N on a domain D converges uniformly to f on D if and only if the
sequence {fn}n∈N is uniformly Cauchy on D. As in the case of sequences of real
numbers, this provides a way to show a sequence of functions converges without
having to find its pointwise limit.

Exercise 7.18. (Dini’s Theorem) Suppose fn converges to f pointwise on [a, b]
with both fn and f continuous on [a, b]. If the sequence is monotone decreasing,
fn(x) ≥ fn+1(x) for all n ∈ N and x ∈ [a, b], then fn → f uniformly on [a, b].

Exercise 7.19. Let g ∈ R[a, b] and let {fn}n∈N be a sequence converging to f

uniformly on [a, b]. Prove lim
n→∞

Z b

a

fn(x)g(x) dx =

Z b

a

f(x)g(x) dx.

Exercise 7.20. Let {fn}n∈N be a sequence of functions on a domain D converging
uniformly on D to f . Show that limn→∞ sup(fn(x)) = sup(f(x)).


