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We have already derived Lagrange’s equation in Semester III
considering the instantaneous state of the system and small virtual
displacements about the instantaneous state, i.e., using a Differential
Principle (a LOCAL principle) such as D'Alembert ’s Principle, which
is essentially based on Newton’s Law.

Jean le
Rond
d'Alembert
(1717 — 1783)

Joseph Louis
Lagrange
(1736 —

1813)

In Semester VI, we shall derive Lagrange's equation from Hamilton’s

Principle: An Integral (or Variational) Principle (a GLOBAL principle) Sir William
that considers the entire motion of the system between times t; and t,, Rowan
and small virtual variations of this motion from the actual motion. Hamilton

(1805 — 1865)
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FHamilton's Vavational Pinciple

Since the state of a particle is specified by its position and velocity at a particular time, we look
for some function of those variables to work with. Then we look for a general principle involving
this function that tells us how the external world influences the particle’s state.

For a system of N particles, the system may be considered as
a single particle moving along a trajectory in a 3N dimensional space.
The space is referred as configuration space and the single particle as system point.
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FHamilton's Vavational Pinciple

Of all possible paths along which a dynamical system may move from one point to another within a

given time interval (consistent with constraints, if any), the actual path followed by the system is the
one for which the line integral of Lagrangian is extremum .

Thus, the motion of a dynamical system from 1, fo t, is such that the line integral I = [L dt is extremum
for actual path. Mathematically,

é»‘der =0 the action or action integral

i}

where L=L(g,.q,.t) isthe Lagrangian of the system.

Alternatively

Hence we can also define the Hamilton’s principle as “Out of all possible

paths of a dynamical system between the time instants 7, and 7, the actual path

followed by the system is one for which the action has a stationary value™

In physics, action is an attribute of the dynamics of a physical system from which the equations of
motion of the system can be derived through the principle of stationary action. Action has the
dimensions of [energy]:[time] or [momentum]-[length], and its Sl unit is joule-second.
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Lagranges Equation fram Hamiltor's

Puinciple

Derivation of Lagrange’s equation from Hamilton’s Principle

!=]&ﬁ (D)

fy

where L is the Lagrangian of the system.

ol = é']L Ldt,

oL dL
= oq, + O
Fﬂ dq { Z g {i
As there 1s no vanatmn in time along any path, hence o6t =0

‘s oL “ oL
o\ Ldt = —0qg.d —0q dt.
J; dt J;;qu q"(HfJ{:;&;’j qdi

lg. ¢

Since s =i(§q.).
dr  drt !

ol a‘

dq; di

(5.:; }d.f .. (2)

JIchr = IZ—(F(; dt +IZ
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Lagranges Equation from Hamilton's Principle

Integrating the second integral on the r. h. s. of equation (2) we get

!
5[&!}'—[2—5(} dt +| Zaé‘q } Iz_l a_L |§q dt.

; L7 9q; | 5 di\ 9q; |
Since there is no variation in the co-ordinates along any path at the end points, hence
change in the co-ordinates at the end points is zero. i.e., [5{}} ]

In

Thus we have

(oL
= .. (3
JILLfT ’[Z{aq drl 2, H Oq dr. (3)

tg 1

I[f the system is holonomic. then all the generalized co-ordinates are linearly

oL H Oq,dr =
| 9q;

independent and hence we have

JIL‘”O‘:’IZLQ

o dt

| A

ijf:o{:pa—‘t—i aL. 0. (&)
dg; dt| dq; )

Which are the required Lagrange’s equation of motion.
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(pplications of Familton’s Variational Principle

Example 1 : Use Hamilton’s principle to find the equations of motion of a particle of
unit mass moving on a plane in a conservative force field.
Solution: Let the force F be conservative and under the action of which the particle

of unit mass be moving on the xy plane. Let P (x, y) be the position of the particle.

We write the force

F =iF + jF,.

Since F is conservative. we have therefore.

gV oV

— F=——.
) dx ! dy

The kinetic energy of the particle is given by
T:lﬁf+fy
2
Hence the Lagrangian of the particle becomes

L=—(*+y")-V(x.y). (D)

b | —
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(pplications of Familton’s Variational Principle

The Hamilton’s principle states that
ajmzo. )

—O0x+—0y +—§r+—§1

| oL dL oL oL
X dr =0,
| dx dy ox dy

fg L

" aV aV
= OX+ yOoy)——0x——0y [dt =0 (3
ﬂ(r X+ Vo) ™ X % 1} (3)
Consider f
voxdt = | x—(Ox )dt
;[ X0 X ;[ *— (Ox )
Integrating by parts we get
I.i"c?.i"dr = (.i"c?x}:" - I‘r (Ox)dr .
Since ox =0 at both the ends 7, and 7, along any path, therefore,
[0t =[x (Sx)dr (4

Iy Iy
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(pplications of Familton’s Variational Principle

Similarly, we have

f g

[yoydi =[5 (5y)dr. .. (5)
Iy Iy

Substituting these values in equation (3) we get

] ‘ X+ NV Hc‘:ﬁnrntr‘ﬁ.jta—‘c‘:ﬁ“@}nﬂf—(}".

In L

Since ox and Oy are independent and arbitrary, then we have

aV aV

Xx+—=0, V+ =0.
dx ' 81
T:_Ba_V: F..
X .
. (6)
) W F,.
dy '

These are the equations of motion of a particle of unit mass moving under the action

of the conservative force field.
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(pplications of Familton’s Variational Principle

Example 2: Use Hamilton’s principle to find the equation of motion of a simple pendulum.

Solution: In case of a simple pendulum, the only generalized co-ordinate is &, and
the Lagrangian is given by

L:%m!zéj—mg.-*(l—cos(;]). (1)

The Hamilton’s Priﬁciple states that “the path followed by the pendulum is one along

which the line integral of Lagrangian is extremum”. i.e.,

5]sz:‘=0.

f l o
J‘c?[znd‘é'z —mgl (1 —CDSQ)J dt =0,

fy

|[ m*656 = mgl sin 658 Jdi = 0.

Since, we have Ji:ic‘}'.
dr  dt

Therefore, L ;;;!39(—:{ 08 ) —mgl sin 6'56'}# =0.
dt

fy =
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(pplications of Familton’s Variational Principle

Inteerating the first integral by parts we get
mi* (658" — [ m[ 16+ glsin 6 56dr = 0.

Iy
Iy

Since (56'}:' =0, we have therefore,
[m[ 1P+ gl sin o |50dt =0

Iy
As 06 is arbitrary, we have

1’6 + glsin@=0

— é+%siné’=0.

This is the required equation of motion of the simple pendulum.
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Upplications of Hamilten’s Vaviational Puinciple

Example 3. Apply variational principle to find the equation of motion of one dimensional
harmonic oscillator.

Solution: : The Lagrangian L for one dimensional harmonic oscillator is

L=T-V=sm® 2k orL=f(xx,1) =3mi’ -1k’

. _ | ’
According to Hamilton’s principle or variational principle J Ldt or j f(x,x,t) dt is extremum.

Euler-Lagrange’s equation is-

d (.@‘J_af “ o |
dt\ ox) oOx
Here a—f-=-h ,.E}:=ﬁf
Ox T Ok
Therefore, mi+ =0

which is the equation of motion for one-dimensional harmonic oscillator.
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(pplications of Familton’s Variational Principle

Example 4: 4 particle of mass m falls a given distance z, in time rg_ = ,fizu /g and the distance travelled in

time t is given by z = at + bt , where constants a and b are such that the time tis always the same. Show

that the integration -ri dt is an extremum for real values of the coefficients only when a = 0 and b = g/2.
' 0

Solution: Let the particle fall from O (z = 0) to P (OP = z) in time 1.
Kinetic energy of the particle at P,

T = %mi‘?‘ . 0 T z=0
Potential energy of the particle at P, V= - mgz
Hence L=T-V =%méz + mgz (1) z
According to the Hamilton’s principle I

fo :
EI Ldt=10 p Y
0

£,
or J.:L dt = extremum, for which

S dlaoL] oL J
. ——|——=10 :
dr[az] e 2 — -

" A "_'-'Ll_' "..' e N
o e rf A

R,

': ”ls to be satisfied.
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(pplications of Familton’s Variational Principle

Here, E-:L =mz and 5_1'. = mg. Hcﬁ:e (2) becomes
"0z 0z -
4 (mz) 0ori=g 3)
—{(mz)—mg = =
dt 8
But z = ar + br* and therefore 7 = @+ 2bf and 3 =2b &)
From (3)and (4) we get ' _
2b=gor b=gR2 &)
Also at t = t,, z = z,, we have
- 2y = aty + bt ©
ﬁE
But fy = X orzy = %grﬁ (7)
Ve
Comparing (6) and (7) and putting b = g/2, we get.
| g.2_1 3
aty + =15 =—gty =
0 5 0 23{: _ﬂrﬂfﬂ 0

Since £, # 0, therefore, a = 0.

iy
Thus we find that J- L dt is extremum, when a =0, b= g72.
. 0
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Upplications of Hamilten’s Vaviational Puinciple

Example 5: Imagine that we have a particle than can move in one dimension (i.e. one
coordinate — for example its height y above a table — suffices to describe its position). Using
Hamilton’s Principle find the equation of motion.

Solution: We are going to use the variational principle to find the equation of motion
§ . . Lo . 2 . .
Its kineticenergy is 7" = 1my~ and potential energy is V = mgy.

The lagrangian of the systemis [ = %mﬁ,z — mgy

According to Hamilton’s Principle, aj” Ldt =0

ma‘[r][% V' — gy)dt = 0.
mJ”:[ji‘a‘i‘ — goy)dr=0

I — I, =0, say
. fa |
Therefore I, = mJ. ydoy
Iy
. . . 14 .
By integration by parts: I, = [myoy]? — mJ. oy dy
, ,Oya

The ftirst term 1s zero because the variation is zero at the beginning and end points. In the
second term, dv = vdr. and therefore
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Upplications of Hamilten’s Vaviational Puinciple

I, = —mJ.rE_f Oy dt

E}J.r:L dr = —mJ.r: (V + g)0vdrt

and. for this to be zero. we must have

.i: - _Lq.
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Familtenian formalism

Lagrange formulation is in terms of generalized coordinates g and generalized Velocities
gives the (guations of motion, which are second order in time. Instead if we regard N
generalized coordinates ¢ and N generalized momenta p as independent variables, and again ¢
and p are defined at every instant of time t, we will get 2N Ist order equations. Hence the
2N equations of motion describe the behaviour of the system in a phase space whose coodinates
are the 2N independent variables. These are called canonical coordinates and canonical
momenta. This new formulation is known as Hamiltonian formulation.
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Familton’s equation from Familten’s Puinciple

We know the action of a particle is defined by

Izildr ... (1)

I:|

where L is the Lagrangian of the system. If H ( pj.,q‘l.,f.} is the Hamiltonian of the
motion then we have by definition
H=% p4q,-L. )

Replacing L in equation (1) by using (2) we have the action in mechanics as

I= iMr=j[Z;;J.qJ. —H}dr. .. (3)

In In, .I'-

Now by Hamilton’s principle, we have

&]Mr 0 = t!}J‘|:qu—Hj|df=ﬂ. co ()

I

This 1s known as the modified Hamilton’s principle. Thus we have

t’f} Ldt = t’?{r_z P4, —H}dﬂ‘,

Ig L J

S[Ldi=[ S 6pd,+Y p,bi —Taﬁa —Tfﬂa _9H sl
P+ 2 P04, =g, T =op T
_a T i i
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Familton’s equation from Familten’s P

ncip

le

Since time is fixed along any path, hence change in time along any path is zero. ie.,

ot =0 along any path. Hence above equation becomes

dl.[dr— {Z‘ q; —ﬂ p’)p +Zp oq, —Z—&}q dt L (3)
dq, |

Now consider the integral

J.Zpt’}qdf—lzlvidr J.}

Integrating the integral on the r. h. s. by parts we get

v

J‘ZPJ' q.rdf ZP ‘-!}qJ . _J‘Zpitbr:}"‘ld!‘

Iy g -"III. Ip E)

Since [ﬂ}q } =(0. We have lherefore

[ > pdadi=-3 pdqgdr.

A n

Substituting this in equation (5) we get

t?i’fld!‘=j‘[2‘ q _ﬁ F_’}p +Z‘ oH | ; dr.

j ‘L-' |
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Familton’s equation from Familten’s Puinciple

Now we sge that

- Yl OH | [ OH |
o| Ldt=0< —— op.+ D+ Og. dr=0.
;II ;||| gl T dp; I b ;I Pi rjq F 7 |
For holonomic system we have g ., p. are independent, hence
SLat=0eq - 0, 5+ o
i " dp; ©dg,
== t?[Mf:G@é.Z?—H .=—£. (6)
v 7 dp ! dq .
I J

These are the Hamilton’s canonical equations of motion.

Hamilton’s canonical equations of motion are the necessary and sufficient conditions for the action to
have stationary value.
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The Hamiltonian H is defined by

H=3 pg,-L.

(D
g
which satisfies the Hamilton’s canonical equations of motion.
. oH _ oH
i p|=—_}— : ... (2)
rpj. t"qj

Now from equation (1) we find the Lagrangian

L=3 p,q,-H.

.(3)
Thus, _a—L:—ﬂ, and H_L: P
dg, dq, dg, '
Hence aL d[aL)| oH d

dq, dt\og, | Oq, dt'
dL d[ oL )

— | |=P;—P;
dq; drl dq; | PP

oL d (oL | _
dq, dt\dq, |

This shows that the equation (3) gives the required Lagrangian which satisfies the
Lagrange’s equations of motion.

Classical Dynamics
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The Hamiltonian H in terms of Lagrangian L is defined as

H=> pgq,—L. ()
where L satisfies the Lagrange’s equations of motion viz.,
}'}_L_i' d‘[’ =0, (D)
dg;, dt| dq; )
L _d| dL
= =y B
dg, dt|\ dg; )
d
_E{.pj }
- JL - p,. . 3)
oq ;
Now from equation (1) we find
dH aL.
o= .. (4)
r}qj. r]qj.
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From equations (3) and (4) we have
oH
[’J'qi.

Similarly, we find from equation (1)

oH
— =3, ... (6)
dp;

Equations (5) and (6) are the required Hamilton’s equations of motion.
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Upplications of Hamilton's equation

Examplel: Describe the motion of a particle of mass m moving near the surface of

the Earth under the Earth’s constant gravitational field by Hamiltons procedure.
Solution: Consider a particle of mass m moving near the surface of the Earth under
the Earth’s constant gravitational field. Let (x, y. z) be the Cartesian co-ordinates of
the projectile, z being vertical. Then the Lagrangian of the projectile is given by

l=%.rul:.i':+_1I'3+f_3':l—mg:. .1

We see that the generalized co-ordinates x and y are absent in the Lagrangian,
hence they are the cyclic co-ordinates. This implies that any change in these co-
ordinates can not affect the Lagrangian. This implies that the comesponding
generalized momentum is conserved. In this case the generalized momentum is the

linear momentum and is conserved.

P, = mx= const.

) )

Le :
.E-F.,_ = My = Comnst.
p, =mz.
This shows that the horizontal componenis of momentum are conserved.
The Hamiltonian of the particle is defined by

H= pyi;-L
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Upplications of Hamilton's equation

- - - I -7 - F -7
H=p x+p y+p, :—Em[.ﬁ;'+_1."+:']+m;;:- e 3)

Eliminating x, v, Z between equations (2) and (3) we et

L f 2 2 2
H=—Ip +p,+p;|+mgz. )
2m : )
The Hamilton’ s equations of motion give
. IH _ H . H
p£=—r_ ='|:|',p._=—r. =[l,,|:l-=—r. =—mg. ... (3)
olx . dy - oz
. oH . OH . . oH
and =1 =&,1'= _ 5 :=r & Y

dp, m = dp. m  dp, m
From these set of equations we obtain
i=0,¥y=0,Z=—¢ T
These are the required equations of motion of the projectile near the surface of the
Earth.
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Upplications of Hamilton's equation

Example 2: (htain the Hamiltonian H and the Hamilton's equations of motion of a
simple pendulum. Prove or disprove that H represents the constant of motion and
total energy.

Solution: The Example is solved earlier by various methods. The Lagrangian of the
pendulum is given by

L=%mf:t’=§'1—rrzgfil—f{}sﬁ?], ... (1)

where the generalized momentum is given by
el

23 3 F‘Iy :
=—=mlf= H= -, |:2:|
Fe dé mil -
The Hamiltonian of the system is given by
H=pp-L
A
= H= pyt':i'—?ml“ﬁi" +mgl(1-coséd ).
Eliminating & we obtain
He Po . . ]
= —+mgl|{l-cosd). ce (3
2ml*
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Upplications of Hamilton's equation

Hamilton’s canonical equations of motion are

o . o

-’-;'fj': -
These equations give

Py

g=1e p, =—mglsiné. . (4)
mi”

Now eliminating p, from these equations we get

éi;+‘?—5int’:i'=ﬂ_ =)

This is the equation of motion of the system.

Now, ﬂ:ﬁl*‘—ﬂ"+mg!5inﬁ g,

i mi

= ml*66 + mgl sin 89 ,
= ﬂré':t“-j';: E-i'-—%ﬂim’:" .

Hence, — dH _ 0.  This proves that H is a constant of motion.
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Upplications of Hamilton's equation

Now to see whether H represents total energy or not, we consider

T+V =ém!:t§'1 +mgl(l—cosd).

Using equation (4) we eliminate # from the above equation, we obtain

T+V=-e | mgl{1-cos8). ... (6)
il

This 15 as same as the Hamiltonian H from equation (3). Thus Hamiltonian H

represents the total energy of the pendulum.
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Upplications of Hamilton's equation

Example 3: Find the equations of motion of a particle in a central field of force using Hamilton’s
equations.

Solution: In such a field the force is always directed to the centre.

- =Tl d
F:_i_‘-_-_l:- li'[r]:_i (1)
r’ or r
[f m be the mass of a particle moving in the central force field, then the Lagrangian L in polar coordinates
can be expressed as
L=T .15(.-)=_fm{s=’”’e?]-r[r} )

In order 10 write the Hamiltonian, 7 and€) must be replaced by the generalized momenta p,and p, . Now

or Fo Lo andg =P (3
m mr-
L P]z "[H: 2
Hence H=T+v=im| 2] 472 B J-Irl"'{r}
Pllmi Lmr
or H'-—I-Ff*ﬂs- +¥(r) (&)
2m rld
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Upplications of Hamilton's equation

The Hamilton's equations are

oH . oH
and - p; = -
apy Oq ¢

Here k = rand @ ; hence in the present case, the equations arc

gy

ia oH _ P
dp, m &)

P T ©
. OH
g=2H _ R
sy mr’ (7)
. H
and -y " E =0 (3

Fromegs. (7) and (8) ), we get

P ™ constant = — 9
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Upplications of Hamilton's equation

Thas s the familiar equation of conservation of angular momentum of a particle, moving in a central
force field. Fromegs. (5)and (6) we have

1 - 1
vV : oV
—nF " Po_ 4 S5 ormi -—&3—‘+-—'-='[} (10) |
_Jm*'] dr mr or e

This 1s an umportant differentail equation in second order for a particle moving under central force. In
case of square law force, Mr) = - Kir and f(r) = - oV/idr = - K/r*. Then

* K
] 3 0 1) |
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Symmetiies and cansewvation laws

One very important discovery has been the link between conservation laws and basic symmetries
in nature. For example, empty space possesses the symmetries that it is the same at every location
(homogeneity) and in every direction (isotropy); these symmetries in turn lead to the invariance
principles that the laws of physics should be the same regardless of changes of position or of
orientation in space. The first invariance principle implies the law of conservation of linear
momentum, while the second implies conservation of angular momentum. The symmetry known
as the homogeneity of time leads to the invariance principle that the laws of physics remain the
same at all times, which in turn implies the law of conservation of energy.

Recall:

With the generalized momentum p; = l;,’]—:-;— the EL equations take the form
1

dp; 0L
dt g

Thus, if I does not depend on q; (i.e. gq; is cyclic), then the conjugate momentum is conserved
over time, i.e. it is a constant of motion.
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Symmetiies and cansenvation louvs

Homogeneity of Time and Energy Conservation

If you calculate the equations of motion for a Lagrangian starting for time £ to £;, does the Lagrangian and hence the equations of motion change if we calculate the
equations of motion for the same time span but starting at a later time? That is, if we shift time by At and make the transformation ¢ — t' = t + At does the
Lagrangian change? To answer this question we analyze the total time derivative of the Lagrangian.

dL alL | oL
o = = i+ 9
dt Z Og; aq;

If the Lagrange function would be time dependent we would get an additional term with the partial derivative of the Lagrangian with respect to time %. By use of the
8L d 8L

Euler-Lagrange Equation, we replace e by & a5,

dL . d 9L aL

& 2 %aag, o,

Mow we see, that this is nothing but the derivative of the product

Rearranging terms we have

Thus whatever is in the Brackets is consemved.

Z@;a—F—L=cmst. (1)

Classical Dynamics Paper:DSE 4 (Semester V)



Symmetiies and cansenvation louvs

We define this constant as the Hamiltionian H. Since there is no explicit time dependence of the Lagrangian, the Lagrangian is invariant with respect to time

transformations t — ' = ¢t + At. So far so good, but what does the conserved quantity represent? For a Lagrange function of the form L = T'(g;) — V(g;) it is
true that

al aTr
i— =Y di— = 2T
%54, E* a4,

now plugging this into, equation (1)

aL
szqiﬁ —L

becomes

H=2T-L=2T-T+V=T+V=E

Time Symmetry: A time homogeneous (independent) Lagrangian is invariant under time translation. The energy of the system is conserved and equals the
Hamiltonian.
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Symmetiies and cansenvation louvs

Isotropy of Space and Angular Momentum Conservation

Isotropy means the property that rotational translation does not alter the Lagranian. An infinitesimal rotation 8¢ leaves the Lagrangian invariant

For a particle with position vector © from the origin. The change in dr due to the infinitesimal rotation is proportional to the distance r.

dr=dpxr

the time dernvative of this relation gives a similar expression for velocity

dv=4p xv

The change in the Lagrangian due to rotation is

oL aL
6L = or; dv; | = 0.
Z(aﬁ " B ﬂl)

These equations together with the definitions

oL
ars D
oL

o, o

give

SL=(p-dpxr+p-dgxv)=0
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Symmetiies and cansenvation louvs

we use that even permutations of p - 6@ x rarethe samea-(bxc)=b-(cxa)=c-(ax b),
SL=46p(rxp4+pxv)=0
. d
dL = dp— =0
$o(rxp)

& is arbitrary, thus for the Lagrangian to be invariant we need
d
— rxp=~0

to be zero.

Fa

Which means the angular momentum is conserved.

L =r % p = const.
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