Semester - VI / CC- XIII: Principles of Genetics / Unit 7: Recombination in Bacteria and Viruses /Topic: Complementation

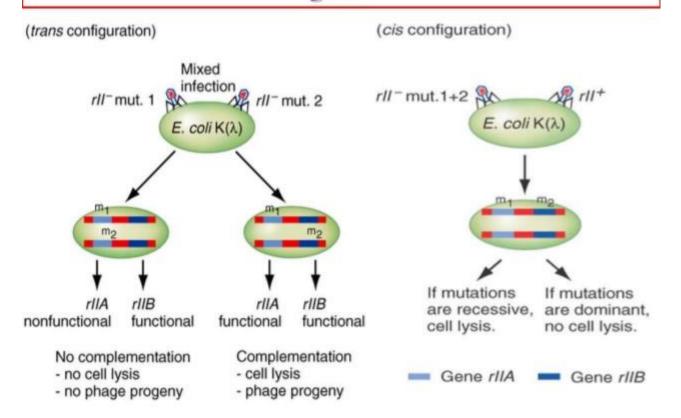
Test in Bacteriophage

E-Class: 01

Complementation Test in Bacteriophage

1) What is Complementation Test?

Experimental determination of any two recessive mutations occurring whether in same chromosome or in different chromosome in a common protoplasm is called complementation test.


2) How many types of complementation test? It is of two types – 1) *cis*-test & 2) *trans*- Test

3) Define cis-test and give an example.

Experimental determination of any two recessive mutations occurring in same chromosome in a common protoplasm is called *cis*-test.

Example: rII locus (rapid lysis) mutations in T4 phage.

Complementation test for mutations in different genes

4) Define *trans*-test. Give an example.

Experimental determination of any two recessive mutations occurring in different chromosomes in a common protoplasm is called *trans*-test.

Example: T4 rII mutations

5) Explain the results of complementation test.

Complementation test	Gene product	Phenotype	Conclusion
Intragenic <i>cis</i> -test	i) The products of two mutations in	Therefore, the	Mutations are in cis-
	same gene are inactive.	phenotype will be wild	position of a chromosome.
	ii) Whereas, the product of normal	type.	
	gene is active.		
Intragenic trans- test	i) The products of two mutations in	Therefore, phenotype	Mutations are in trans-
	same gene are inactive	will be mutant.	position of a homologous
			chromosome pair.
Intergenic <i>cis</i> -test	i) The products of two mutations in	Therefore, the	Mutations are in cis-
	two different genes are inactive.	phenotype will be wild	position of a chromosome.
	ii) Whereas, the products of two	type.	
	normal gene are active.		
Intergenic trans-test	i) The products of two mutations	Therefore, the	Mutations are in trans
	are inactive.	phenotype will be wild	position of a homologous
	ii) Whereas, the products of two	type.	chromosome pair.
	normal genes are active		

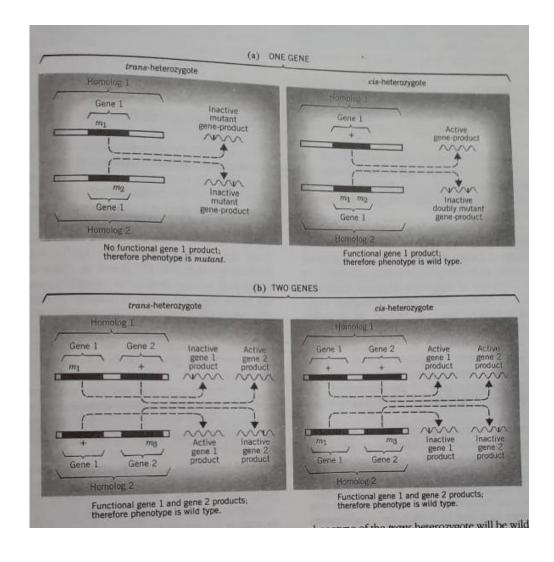


Fig: Interpretation for complementation test. m1- mutation 1, m2 – mutation 2 & + - no mutation

6) Why is trans-test called complementation test?

In intragenic *trans*- mutations, the mutational effects determine mutant phenotype but in intergenic *trans*-mutations, mutational effects determine wild phenotype.

Conversely, in both intra and intergenic cis-mutations, mutational effects determine wild phenotype only.

Therefore, trans-test is commonly called complementation test and cis-test acts as control.

- 7) Mention some limitations of complementation test.
- i) It can't determine dominant and co-dominant mutations.
- ii) It can't detect polar mutations.
- iii) It can't depict the effect of cis-acting genes, segments of promoter regions and segments of operator regions.
- iv) Genes in which mutations occur that exhibit intragenic complementation are not detected.

8) Distinguish between Complementation and Recombination

Points	Complementation	Recombination	
What is	Complementation is the result of the interaction of	Recombination is the direct interaction between	
	gene products.	homologous chromosomes	
Mechanism	Complementation but no need of breakage of	It involves breakage of chromosomes and reunion	
	chromosomes.	of parts.	
Detection	It is determined by phenotype (wild or mutant) of	It is determined by examining the progeny of	
	each trans heterozygote.	heterozygotes.	