Semester II

CC IV: Animal Physiology

Unit 3: Respiratory System

E-Class: 02

**Topic: Dissociation Curve and Influencing Factors** 

Dr. S Rana

## **Oxyhaemoglobin Dissociation Curve**



### **Oxyhaemoglobin Saturation Curve**

Graphical presentation of oxyhaemoglobin complex formation in RBC with different pressure of O<sub>2</sub> at normal temperature, and pH

O<sub>2</sub> supply to every tissue for ATP generation

Low saturation creates hypoxia





$$\begin{aligned} \mathsf{Hb_4} + \mathsf{O_2} &\longleftrightarrow \; \mathsf{Hb_4O_2} \\ \mathsf{Hb_4O_2} + \mathsf{O_2} &\longleftrightarrow \; \mathsf{Hb_4O_4} \\ \mathsf{Hb_4O_4} + \mathsf{O_2} &\longleftrightarrow \; \mathsf{Hb_4O_6} \\ \mathsf{Hb_4O_6} + \mathsf{O_2} &\longleftrightarrow \; \mathsf{Hb_4O_8} \end{aligned}$$

P<sub>O2</sub> in alveoli = 100mmHg

#### **Dissociation Curve**

Graphical presentation of the dissociation of oxyhaemoglobin complex in RBC at different concentration of influencing factors under constant partial pressure of O<sub>2</sub>



# **Influencing Factors**

- 1) Temperature
- 2) P<sub>CO2</sub>
- 3) P<sub>co</sub>
- 4) pH
- 5) 2,3 DPG
- 6) Hb F

## **Body Temperature (T)**

$$Hb_4O_8 \rightarrow Hb_4O_6 + O_2 \rightarrow Hb_4O_4 + O_2 \rightarrow Hb_4O_2 + O_2$$



 $S_{O2} \alpha T^{-1}$ 

D<sub>02</sub> α Τ

Higher temperature causes hypoxia

# Partial pressure of CO<sub>2</sub> in blood (P<sub>CO2</sub>)

$$Hb_4 + CO_2 \rightarrow Hb_4CO_2$$
;  $Hb_4O_2 + CO_2 \rightarrow Hb_4CO_2 + O_2$ ;  $Hb_4O_4 + CO \rightarrow Hb_4CO_2 + CO_2 + CO_2 \rightarrow Hb_4CO_2 + CO_2 +$ 

Normally,
DO<sub>2</sub> occurs
at tissue
capillaries
but in higher
P<sub>co2</sub>, it
occurs at
alveolar
capillaries

High DO<sub>2</sub> causes hypoxia & death



P<sub>co2</sub>
Alveoli =
40 mmHg
Arterial blood =
40 mmHg
Venous blood =
45 mmHg
Tissue =
50mmHg

 $DO_2 \alpha P_{CO2}$ 

 $SO_2 \alpha P_{CO2}^{-1}$ 

## Partial Pressure of CO in blood (Pco)

 $Hb_4 + CO \rightarrow Hb_4CO$ ;  $Hb_4O_2 + CO \rightarrow Hb_4CO + O_2$ ;  $Hb_4O_4 + CO \rightarrow Hb_4CO + 2O_2$ ;  $Hb_4O_6 + CO \rightarrow Hb_4CO + 3O_2$ ;  $Hb_4O_8 + CO \rightarrow Hb_4CO + 4O_2$ 



Figure 1. Dissociation curve of O<sub>2</sub> in the blood for several values of COHb.

### pH in Blood

$$Hb_4O_8 + H^+ \rightarrow Hb_4O_6 + O_2$$
  $Hb_4O_6 + H^+ \rightarrow Hb_4O_4 + O_2$   
 $Hb_4O_4 + H^+ \rightarrow Hb_4O_2 + O_2$   $Hb_4O_2 + H^+ \rightarrow Hb_4 + O_2$ 

Higher pH can cause hypoxia, acidosis & death

High P<sub>CO2</sub> (> 50mmHg) increases blood pH resulting in acidosis (pH < 7.35)



pH Blood = 7.4

Pulmonary blood = 7.2

Tissue blood = 7.6

 $DO_2 \alpha [H^+]$ Or  $DO_2 \alpha pH$ 

 $SO_2 \propto [H^+]^{-1}$ 

(b) Effect of pH

## 2,3 Diphospho glycerate (2,3 DPG) in RBC

Glycolytic intermediate Hb affinity: 2,3 DPG >  $O_2$  $Hb_4 + DPG \rightarrow Hb_4DPG$   $Hb_4(O_2)_x \rightarrow Hb_4DPG + xO_2$ 

Normal conc. in RBC: 5 mmol L-1

DPG
allostericall
y promotes
RBC to
release O<sub>2</sub>
near tissue



DO<sub>2</sub> α DPG

SO<sub>2</sub> α DPG<sup>-1</sup>

DPG can't influence myoglobin saturation

In pregnancy DPG increases by 30% resulting in hypoxia

### Fetal Haemoglobin (HbF) in Blood



O<sub>2</sub> affinity: HbF > HbA

 $SO_2 \alpha HbF$   $DO_2 \alpha HbF^{-1}$ 

#### **Curve shift**

Oxygen-Hemoglobin Dissociation Curve



Oxygen Partial Pressure (mm Hg)

#### **Model Questions**

- 1) Define O<sub>2</sub> saturation curve? Where does it occur in our body?
- 2) What is oxyhaemoglobin dissociation curve? Give importance of the curve.
- 3) Cite the names of influencing factors.
- 4) Which is allosteric factor? Why is it called such?
- 5) Mention the conditions for curve shifting.
- 6) How do T, CO<sub>2</sub>,CO, [H<sup>+</sup>] & HbF influence dissociation curve.
- 7) Describe the role of 2,3 DPG to influence dissociation curve.
- 8) Why does pregnant woman feel hypoxia?
- 9) What will be fate of dissociation curve in acidosis?
- 10) Why is CO more toxic than CO<sub>2</sub>?
- 11) What is P<sub>50</sub>?
- 12) Why do we feel hypoxia in summer?
- 13) Calculate  $P_{50}$  from the dissociation curve.

