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Caleuwlus of vaviation

Solution of a dynamical problem means that we want to locate the position of the

system at a particular instant of time. Sometimes we are also interested on the
path followed by the system.

The piece wise information of the path y=f (x), whether it is minimum or maximum at
a point can be obtained from differential calculus by putting y'=0. The function is
either maximum or minimum at a point x=a depends upon the value of second

derivative of the function y " at that point. The function is maximum at x= a if y "(a)<0
and 1s minimum if y "(a)>0 .

However, if we want to know the information about the whole path, we use integral
calculus. i.e., the techniques of calculus of variation (variational principle). Thus the
calculus of variation has its origin in the generalization of the elementary theory of
maxima and minima of function of a single variable or more variables. The history of

calculus of variations can be traced back to the year 1696, when John Bernoulli
advanced the problem of the brachistochrone.
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Caleuwlus of vaiation

Consider the motion of a particle or system of
particles along a curve y = f(x) joining two points
P(x;,y;) and Q(x,,y,). The infinitesimal distance
between two points on the curve is given by

1
ds = (ﬂh’z +dy’ )E

Hence the total distance between two point P and Q
along the curve is given by
2 ] dy

I (1(\]] — I [ [+ y7 )Ed.\: Y =

. dx

In general the integrand is a function of the
independent variable x, the dependent variable y
and its derivative y’. Thus the most general form of
the integral is given by

I=[7 fIy(o.y (), xldx.

Classical Dynamics

ds = (ch‘z +dy’ )E
1
=(1+)" )Edr
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Caleuwlus of vaviation
Formulation of the problem of calculus of variation

The integral 7 —_[ Sly(x), y'(x), x]dx. may represent the total path between two
given points, the surface area of revolution of a curve, the time for quickest decent
etc. depending upon the situation of the problem.

The functional 7, in general, depends upon the starting 'I,‘ >

point P(x;,y;), the end point Q(x,,y,) and the curve /,-f

between two points. 9//
o o o Qxyyy %

The question is what condition is to be satisfied by y(x) g

such that the functional /(y(x)) must have an extremum ds = (dx* +dy* )2

value. 1

= (1+y7)2dx

The calculus of variations is concerned with the maxima or minima (collectively
called extrema) of functionals. A is described as "functions of
functions” which means a quantity whose values are determined by one or

several functions.
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Caleuwlus of vaiation

Our aim is to find a curve (path) between P and Q for
which the integral

I(y(x))= } f(x v, ¥ )dx (D)

1S an extremum. So, we have to take into account
all possible paths between these two points . To
include other paths, we require another parameter , 0 %
say o.

We can label all possible paths starting from P and ending at Q by the family of

equations
viv,a)=y(x,0)+an(x), . (2)

where ¢ is a parameter and 77(x) is any differentiable function of x.
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Caleulbus of variation

For different values of a we get different curves. Accordingly the value of the
integral / will be different for different paths. Since y is prescribed at the end points,
this implies that there is no variation in y at the end points. i.e., all the curves of the

family must be identical at fixed points P and Q.
- r}(“-l):{]:f?(xzj ... (3)
Conversely, the condition (3) ensures us that the curves of the family that all pass

through the points P and Q. Let the value of the functional along the neighboring

curve be given by

I(y(x a))= I flx y(x @), y(x a))dy (4
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Caleulbus ef variation

(dl )
From differential calculus, we know the integral 7 1s extremum if ta_ =1
a )
- S a=0

since for a =0the neighboring curve coincides with the curve which gives

extremum values of [ .

If .1.'1 I"/ v -
Thus a—[} =0, > [ia‘—ff}(.r)—i—df}!}"[.\')}ii'zﬂ.
\ aa far=0 .;l I"\ 81" a‘\'
Integrating the second integration by parts, we get
}a—ff}[ r]dr+‘r{ o n(x) ]IJ _-"zi:{” 9f \!}( x)dx=0 (5)
cay’ T oy T Jy oz dx\ gy vt T

As vy is prescribed at the end points, hence on using equations (3) we obtain

7 (x)dx=0.

\ B}" J ,f

( of _d ‘f’ of |

cldy dx
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By using the basic lemma of calculus of variation we get

Bf’_d(af 0 ©
dy dx! 9y’ ' o

This is required Euler- Lagrange differential equation to be satisfied by y(x) for

which the functional / has extremum value.

Leonhard Euler Joseph Louis
(1707 — 1783) Lagrange
(1736 — 1813)
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Upplication of variational principle

1.Shortest distance between two points in a plane

A. Eucledian Plane
Take P(x,.y,) and Q(x,.y,) be two fixed points in a Euclidean plane.

Let y= f(x) be the curve between P and Q. Then the element of distance between
two neighboring points on the curve y= f(x) joining P and Q is given by
ds® =dx’ +dy’

Hence the total distance between the point P and Q along the curve is given by

Q
[=Id.€
"
- = }(H 1"3)%(1’1' v’—ﬁ (1)
— - - - _{»f“- " & @

X
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Upplication of variational principle

Here the functional [ is extremum if the integrand

I | =

f=(1+y7)
must satisfy the Euler-Lagrange’s differential equation

of _d(af\_,
dy dx\ady )

Now from equation (2) we find that

i =0 and o = Y

oy o iy
oAy 0

ar| iy

Integrating we get
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Upplication of variational principle
Squaring we get

c
v =c, where c, =

] ] .
VIi+c¢®
Integrating we get

y=c¢x+c,. S

Thus the shortest distance between two points in an Eucledian space is a straight line.

Geodesic: A curve representing
the shortest distance between
any two points on a given

If an insect is placed
on a surface and
continually walks
"forward", by
definition it will trace
out a geodesic.

https://en.wikipedia.org/wiki/Geodesic#/media/File:Insect_on_
a_torus_tracing_out_a_non-trivial geodesic.gif

surface. The term "geodesic"
comes from geodesy, the
science of measuring the size
and shape of Earth.
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Upplication of variational principle

B. Polar Plane
Define a curve in a plane. If A (x,y) and B(x+dx,y+dy) are
infinitesimal points on the curve, then an element of distance between A and B is
oiven by

ds* = dx* + dy*. (D)
Let €=46(r) be the polar equation of the curve and P(r.6,)and Q(r,,6,) be two
polar points on it. Recall the relations

X =rcosé,

y=rsiné.
Hence equation (1) becomes

ds*> =dr* +r*d6- . . (2)
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Upplication of variational principle

Thus the total distance between the points P and Q becomes

F T l ’ d-
= 202 gy, 0= .3
! ;|:(l+f e ] dr, 6 - (3)

The functional / is shortest if the integrand

f=(1+r67) NCY
must satisty the Euler-Lagrange’s differential equation

of d [ of }:(1 (5)

00 dr\ d6, o

d( re ) —0.

dr N1+r707 )
= @ =hJ1+r°6" .
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Upplicatien of vaiational principle
Squaring and solving for 8" we get

dé _+ h

dr r(rz —,-”.-‘3)

b2 |

On integrating we get

@ =+cos™

o
EFQ{].

I
where 6, is a constant of integration. We write this as
h=rcos(6—6,). . {1

This is the polar form of the equation of straight line. Hence the shortest distance

between two polar points is a straight line.
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Upplication of variational principle

2. Minimum surface of revolution

Consider a curve between two points (x,, y,) and (x,,y,) in the xy plane

Y whose equation is y = y(x). We form a surface
"\Z'_'_:::::;? by revolving the curve about y-axis. Our claim is
Amgd%{fds to find the nature of the curve for which the

II'L j surface area i1s minimum. Consider a small strip
— at a point A formed by revolving the arc length
0 o ds about y —axis. If the distance of the point A

on the curve from y-axis is x, then the surface
z

area of the strip is equal to 27 x ds .

But we know the element of arc ds is given by

ds =14+ v dx.
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Upplication of variational principle

Thus the surface area of the strip ds is equal to

27X 1+ v dx |

Hence the total area of the surface of revolution of the curve y= y(x) about y- axis

Is given by

iszmuh+;ﬂdL (D)

x

This surface area will be minimum if the integrand

£ =27x 1+ (2

must satisfy Euler-Lagrange’s equation

of d(of )

]L_( f;.:[}_‘ (3]
dy dx\ dy )

d| 2rxy _0 = d| xy ~0.

—_—

— | 5 — | 5
de| it y? dx| f1+y?
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Upplication of variational principle

Integrating we get

# 7
Xy =ayl+y~.

Solving for y” we get

dy a

Integrating we get

£ 3
_\‘Z(ICDSh_I‘ = ‘H’J.
A )

(v=b)

. (4)

Or x = acosh

a

This shows that the curve is the catenary.
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Upplicatien of vaiational principle
3. Brachistochrone problem

To find a curve joining two points along which a particle falling from rest under the
influence of gravity travels from higher to the lower point in the minimum time.

Let A and B be two points on the curve not lie on the vertical line.

ds . . : . .
v = oy be the speed ol the particle along the curve. Then the time required to fall an
ar

arc length dsis given by

ds
dt = —
A y .
J1+y7
= df ="———dx.
.
-B Therefore the total time required for the particle to go
X from A to B is given by
B #7
JI+y©
fyy = [ ——dx ()
. ;
A
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Upplicatien of vaiational principle
Since the particle falls freely under gravity, therefore its potential energy goes on
decreasing and is given by

V =—mgx,
and the Kinetic energy is given by

| 5
T =—mv~.
)

Now from the principle of conservation of energy we have
T'+V =constant.

Initially at point A, we have x=0 and v=0. Hence the constant is zero.

I,
—  —mv-  =mgx,
5 g

e

= v=4/2gx. .. (2)
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Upplicatien of vaiational principle
Hence equation (1) becomes

» =j VI e (3

———t

2 oy
T2

Thus ¢,, is minimum if the integrand

) Bt

must satisfy Euler-Lagrange’s equation
of d[of)
o f“:g . .(5)
dy dx|dy )

—_—,

»

=0

4 -

d | y ] , - d [y ]
dx \ \/233.1'(1 - _1"'3 ) dx | yx(d+ _1"3 ) |
V' =cyfx(1+y7) .
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Upplicatien of vaiational principle
Solving it for y" we get

dy Jx

dx Ja—x

Integrating we get

y=| V

dx+b .. (6)
Ad—X
Put
x=asin*(6/2) 7
—  dx=2asin(8/2)cos(8/2)d6 '
Hence

y= nj sin>(6/2)d0 +b.

— 11':%{6'—5i116')+f;.
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Upplication of variational principle
If v=0,0=0=b=0,

y=§{9—ﬁn9y . (8)

Thus from equations (7) and (8) we have

x=b(1-cos8),

-~
=

y=b(6-sinb), for b=

19 |

This i1s a cycloid. Thus the curve 1s a cycloid for which the time of decent is

minimumn. M

B raCh IStOChrO ne: https://simple.wikipedia.org/wiki/Brachistochrone curve#/media/
the path of File:Brachistochrone.qgif

(brachistos) The curve of fastest descent is not a straight
(chronos) or polygonal line (blue) but a cycloid (red).
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1. Classical Mechanics, H. Goldstein, C.P. Poole, J.L. Safko, 3rd Edn.
2002, Pearson Education
2. Mechanics, L. D. Landau and E. M. Lifshitz, 1976, Pergamon
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