
Chapter 2

First Order Ordinary

Differential Equations

The complexity of solving de’s increases with the order. We begin with first
order de’s.

2.1 Separable Equations

A first order ode has the form F (x, y, y′) = 0. In theory, at least, the methods
of algebra can be used to write it in the form∗ y′ = G(x, y). If G(x, y) can
be factored to give G(x, y) = M(x) N(y),then the equation is called separable.
To solve the separable equation y′ = M(x) N(y), we rewrite it in the form
f(y)y′ = g(x). Integrating both sides gives∫

f(y)y′ dx =
∫

g(x) dx,∫
f(y) dy =

∫
f(y)

dy

dx
dx.

Example 2.1. Solve 2xy + 6x +
(
x2 − 4

)
y′ = 0. ∗

∗We use the notation dy/dx = G(x, y) and dy = G(x, y) dx interchangeably.

5
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Solution. Rearranging, we have(
x2 − 4

)
y′ = −2xy − 6x,

= −2xy − 6x,

y′

y + 3
= − 2x

x2 − 4
, x 6= ±2

ln(|y + 3|) = − ln
(∣∣x2 − 4

∣∣)+ C,

ln(|y + 3|) + ln
(∣∣x2 − 4

∣∣) = C,

where C is an arbitrary constant. Then∣∣(y + 3)
(
x2 − 4

)∣∣ = A,

(y + 3)
(
x2 − 4

)
= A,

y + 3 =
A

x2 − 4
,

where A is a constant (equal to ±eC) and x 6= ±2. Also y = −3 is a solution
(corresponding to A = 0) and the domain for that solution is R. ♦

Example 2.2. Solve the ivp sin(x) dx + y dy = 0, where y(0) = 1. ∗

Solution. Note: sin(x) dx + y dy = 0 is an alternate notation meaning the same
as sin(x) + y dy/dx = 0.

We have

y dy = − sin(x) dx,∫
y dy =

∫
− sin(x) dx,

y2

2
= cos(x) + C1,

y =
√

2 cos(x) + C2,

where C1 is an arbitrary constant and C2 = 2C1. Considering y(0) = 1, we have

1 =
√

2 + C2 =⇒ 1 = 2 + C2 =⇒ C2 = −1.

Therefore, y =
√

2 cos(x)− 1 on the domain (−π/3, π/3), since we need cos(x) ≥
1/2 and cos(±π/3) = 1/2.
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An alternate method to solving the problem is

y dy = − sin(x) dx,∫ y

1

y dy =
∫ x

0

− sin(x) dx,

y2

2
− 12

2
= cos(x)− cos(0),

y2

2
− 1

2
= cos(x)− 1,

y2

2
= cos(x)− 1

2
,

y =
√

2 cos(x)− 1,

giving us the same result as with the first method. ♦

Example 2.3. Solve y4y′ + y′ + x2 + 1 = 0. ∗

Solution. We have (
y4 + 1

)
y′ = −x2 − 1,

y5

5
+ y = −x3

3
− x + C,

where C is an arbitrary constant. This is an implicit solution which we cannot
easily solve explicitly for y in terms of x. ♦

2.2 Exact Differential Equations

Using algebra, any first order equation can be written in the form F (x, y) dx +
G(x, y) dy = 0 for some functions F (x, y), G(x, y).

Definition
An expression of the form F (x, y) dx + G(x, y) dy is called a (first-order) differ-
ential form. A differentical form F (x, y) dx + G(x, y) dy is called exact if there
exists a function g(x, y) such that dg = F dx + G dy.

If ω = F dx+G dy is an exact differential form, then ω = 0 is called an exact
differential equation. Its solution is g = C, where ω = dg.

Recall the following useful theorem from MATB42:
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Theorem 2.4
If F and G are functions that are continuously differentiable throughout a
simply connected region, then F dx + G dy is exact if and only if ∂G/∂x =
∂F/∂y.

Proof. Proof is given in MATB42. �

Example 2.5. Consider
(
3x2y2 + x2

)
dx +

(
2x3y + y2

)
dy = 0. Let

ω =
(
3x2y2 + x2

)︸ ︷︷ ︸
F

dx +
(
2x3y + y2

)︸ ︷︷ ︸
G

dy

Then note that
∂G

∂x
= 6x2y =

∂F

∂y
.

By Theorem 2.4, ω = dg for some g. To find g, we know that

∂g

∂x
= 3x2y2 + x2, (2.1a)

∂g

∂y
= 2x3y + y2. (2.1b)

Integrating Equation (2.1a) with respect to x gives us

g = x3y2 +
x3

3
+ h(y). (2.2)

So differentiating that with respect to y gives us

Eq. (2.1b)︷︸︸︷
∂g

∂y
= 2x3y +

dh

dy
,

2x3y + y2 = 2x3y +
dh

dy
,

dh

dy
= y2,

h(y) =
y3

3
+ C
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for some arbitrary constant C. Therefore, Equation (2.2) becomes

g = x3y2 +
x3

3
+

y3

3
+ C.

Note that according to our differential equation, we have

d

(
x3y2 +

x3

3
+

y3

3
+ C

)
= 0 which implies x3y2 +

x3

3
+

y3

3
+ C = C ′

for some arbitrary constant C ′. Letting D = C ′ −C, which is still an arbitrary
constant, the solution is

x3y2 +
x3

3
+

y3

3
= D. ∗

Example 2.6. Solve
(
3x2 + 2xy2

)
dx +

(
2x2y

)
dy = 0, where y(2) = −3. ∗

Solution. We have ∫ (
3x2 + 2xy2

)
dx = x3 + x2y2 + C

for some arbitrary constant C. Since C is arbitrary, we equivalently have x3 +
x2y2 = C. With the initial condition in mind, we have

8 + 4 · 9 = C =⇒ C = 44.

Therefore, x3 + x2y2 = 44 and it follows that

y =
±
√

44− x3

x2
.

But with the restriction that y(2) = −3, the only solution is

y = −
√

44− x3

x2

on the domain
(
− 3
√

44, 3
√

44
)
\ {0}. ♦

Let ω = F dx + G dy. Let y = s(x) be the solution of the de ω = 0, i.e.,
F + Gs′(x) = 0. Let y0 = s(x0) and let γ be the piece of the graph of y = s(x)
from (x0, y0) to (x, y). Figure 2.1 shows this idea. Since y = s(x) is a solution
to ω = 0, we must have ω = 0 along γ. Therefore,

∫
γ

ω = 0. This can be seen
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(x0,y)

γ1

(x0,y0)

(x,y)

γ2

γ

y =s(x)
y

x

Figure 2.1: The graph of y = s(x) with γ connecting (x0, y0) to (x, y).

by parameterizing γ by γ(x) = (x, s(x)), thereby giving us∫
γ

ω =
∫ x

x0

F dx + Gs′(x) dx =
∫ x

x0

0 dx = 0.

This much holds for any ω.
Now suppose that ω is exact. Then the integral is independent of the path.

Therefore

0 =
∫

γ

ω =
∫

γ1

F dx + G dy +
∫

γ2

F dx + G dy

=
∫ y

y0

G(x0, y) dy +
∫ x

x0

F (x, y) dx.

We can now solve Example 2.6 with this new method.

Solution (Alternate solution to Example 2.6). We simply have

0 =
∫ 4

−3

2 · 22y dy +
∫ x

2

(
3x2 + 2xy2

)
dx

= 4y2 − 4 (−3)2 + x3 + x2y2 − 23 − 22y2

= 4y2 − 36 + x3 + x2y2 − 8− 4y2,

finally giving us x3 + x2y2 = 44, which agrees with our previous answer. ♦

Remark. Separable equations are actually a special case of exact equations, that
is,

f(y)y′ = g(x) =⇒ −g(x) dx + f(y) dy = 0 =⇒ ∂

∂x
f(y) = 0 =

∂

∂y
(−g(x)) .
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So the equation is exact. ♦

2.3 Integrating Factors

Consider the equation ω = 0. Even if ω is not exact, there may be a function
I(x, y) such that Iω is exact. So ω = 0 can be solved by multiplying both sides
by I. The function I is called an integrating factor for the equation ω = 0.

Example 2.7. Solve y/x2 + 1 + y′/x = 0. ∗

Solution. We have ( y

x2
+ 1
)

dx +
1
x

dy = 0.

We see that [
∂

∂x

(
1
x

)
= − 1

x2

]
6=
[

1
x2

=
∂

∂y

( y

x2
+ 1
)]

.

So the equation is not exact. Multiplying by x2 gives us(
y + x2

)
dx + x dy = 0,

d

(
xy +

x3

3

)
= 0,

xy +
x3

3
= C

for some arbitrary constant C. Solving for y finally gives us

y =
C

x
− x3

3
. ♦

There is, in general, no algorithm for finding integrating factors. But the
following may suggest where to look. It is important to be able to recognize
common exact forms:

x dy + y dx = d(xy) ,

x dy − y dx

x2
= d
(y

x

)
,

x dx + y dy

x2 + y2
= d

(
ln
(
x2 + y2

)
2

)
,

x dy − d dx

x2 + y2
= d
(
tan−1

(y

x

))
,

xa−1yb−1 (ay dx + bx dy) = d
(
xayb

)
.
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Example 2.8. Solve
(
x2y2 + y

)
dx +

(
2x3y − x

)
dy = 0. ∗

Solution. Expanding, we have

x2y2 dx + 2x3y dy + y dx− x dy = 0.

Here, a = 1 and b = 2. Thus, we wish to use

d
(
xy2
)

= y2 dx + 2xy dy.

This suggests dividing the original equation by x2 which gives

y2 dx + 2xy dy +
y dx− x dy

x2
= 0.

Therefore,
xy2 +

y

x
= C, x 6= 0,

where C is an arbitrary constant. Additionally, y = 0 on the domain R is a
solution to the original equation. ♦

Example 2.9. Solve y dx− x dy −
(
x2 + y2

)
dx = 0. ∗

Solution. We have
y dx− x dy

x2 + y2
− dx = 0,

unless x = 0 and y = 0. Now, it follows that

− tan−1
(y

x

)
− x = C,

tan−1
(y

x

)
= −C − x,

tan−1
(y

x

)
= D − x, (D = −C)

y

x
= tan(D − x) ,

y = x tan(D − x) ,

where C is an arbitrary constant and the domain is

D − x 6= (2n + 1)
π

2
, x 6= (2n + 1)

π

2

for any integer n. Also, since the derivation of the solution is based on the
assumption that x 6= 0, it is unclear whether or not 0 should be in the domain,
i.e., does y = x tan(D − x) satisfy the equation when x = 0? We have y−xy′−
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(
x2 + y2

)
= 0. If x = 0 and y = x tan(D − x), then y = 0 and the equation is

satisfied. Thus, 0 is in the domain. ♦

Proposition 2.10
Let ω = dg. Then for any function P : R → R, P (g) is exact.

Proof. Let Q =
∫

P (t) dy. Then d(Q(g)) = P (g) dg = P (g)ω. �

To make use of Proposition 2.10, we can group together some terms of ω

to get an expression you recognize as having an integrating factor and multiply
the equation by that. The equation will now look like dg + h = 0. If we can
find an integrating factor for h, it will not necessarily help, since multiplying by
it might mess up the part that is already exact. But if we can find one of the
form P (g), then it will work.

Example 2.11. Solve
(
x− yx2

)
dy + y dx = 0. ∗

Solution. Expanding, we have

y dx + x dy︸ ︷︷ ︸
d(xy)

−yx2 dy = 0.

Therefore, we can multiply teh equation by any function of xy without disturb-
ing the exactness of its first two terms. Making the last term into a function of
y alone will make it exact. So we multiply by (xy)−2, giving us

y dx + x dy

x2y2
− 1

y
dy = 0 =⇒ − 1

xy
− ln(|y|) = C,

where C is an arbitrary constant. Note that y = 0 on the domain R is also a
solution. ♦

Given
M dx + N dy = 0, (∗)

we want to find I such that IM dx + IN dy is exact. If so, then

∂

∂x
(IN)︸ ︷︷ ︸

IxN+INx

=
∂

∂y
(IM)︸ ︷︷ ︸

IyM+IMy

.
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If we can find any particular solution I(x, y) of the pde

IxN + INx = IyM + IMy, (∗∗)

then we can use it as an integrating factor to find the general solution of (∗).
Unfortunately, (∗∗) is usually even harder to solve than (∗), but as we shall see,
there are times when it is easier.

Example 2.12. We could look for an I having only x’s and no y’s? For exam-
ple, consider Iy = 0. Then

IxN + INx = IMy implies
Ix

I
=

My −Nx

N
.

This works if (My −Nx) /N happens to be a function of x alone. Then

I = e
R My−Nx

N dx.

Similarly, we can also reverse the role of x and y. If (Nx −My) /M happens to
be a function of y alone, then

e
R Nx−My

M dy

works. ∗

2.4 Linear First Order Equations

A first order linear equation (n = 1) looks like

y′ + P (x)y = Q(x).

An integrating factor can always be found by the following method. Consider

dy + P (x)y dx = Q(x) dx,

(P (x)y −Q(x))︸ ︷︷ ︸
M(x,y)

dx + dy︸︷︷︸
N(x,y)

= 0.

We use the de for the integrating factor I(x, y). The equation IM dx + IN dy

is exact if
IxN + INx = IyM + IMy.
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In our case,
Ix + 0 = Iy (P (x)y −Q(x)) + IP (x). (∗)

We need only one solution, so we look for one of the form I(x), i.e., with Iy = 0.
Then (∗) becomes

dI

dx
= IP (x).

This is separable. So

dI

I
= P (x) dx,

ln(|I|) =
∫

P (x) dx + C,

|I| = e
R

P (x) dx, ex > 0

I = e
R

P (x) dx.

We conclude that e
R

P (x) dx is an integrating factor for y′ + P (x)y = Q(x).

Example 2.13. Solve y′ − (1/x) y = x3, where x > 0. ∗

Solution. Here P (x) = −1/x. Then

I = e
R

P (x) dx = e−
R 1

x dx = e− ln(|x|)dx =
1
|x|

=
1
x

,

where x > 0. Our differential equation is

x dy − y dx

x
= x3 dx.

Multiplying by the integrating factor 1/x gives us

x dy − y dx

x2
= x2 dx.

Then

y

x
=

x3

3
+ C,

y =
x3

3
+ Cx

on the domain (0,∞), where C is an arbitrary constant (x > 0 is given). ♦



16CHAPTER 2. FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS

In general, given y′ + P (x)y = Q(x), multiply by e
R

P (x) dx to obtain

e
R

P (x) dxy′ + e
R

P (x) dx︸ ︷︷ ︸
d(ye

R
P (x) dx)/dx

P (x)y = Q(x)e
R

P (x) dx.

Therefore,

ye
R

P (x) dx =
∫

Q(x)e
R

P (x) dx dx + C,

y = e−
R

P (x) dx

∫
Q(x)e

R
P (x) dx dx + Ce−

R
P (x) dx,

where C is an arbitrary constant.

Example 2.14. Solve xy′ + 2y = 4x2. ∗

Solution. What should P (x) be? To find it, we put the equation in standard
form, giving us

y′ +
2
x

y = 4x.

Therefore, P (x) = 2/x. Immediately, we have

I = e
R

(2/x)dx = eln(x2) = x2.

Multiplying the equation by x2 gives us

x2y′ + 2xy = 4x3,

x2y = x4 + C,

y = x2 +
C

x2
,

where C is an arbitrary constant and x 6= 0. ♦

Example 2.15. Solve e−y dy + dx + 2x dy = 0. ∗

Solution. This equation is linear with x as a function of y. So what we have is

dx

dy
+ 2x = −e−y,
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where I = e
R

2 dy = e2y. Therefore,

e2y dx

dy
+ 2xe2y = −ey,

xe2y = −ey + C,

where C is an arbitrary constant. We could solve explicitly for y, but it is messy.
The domain is not easy to determine. ♦

2.5 Substitutions

In many cases, equations can be put into one of the standard forms discussed
above (separable, linear, etc.) by a substitution.

Example 2.16. Solve y′′ − 2y′ = 5. ∗

Solution. This is a first order linear equation for y′. Let u = y′. Then the
equation becomes

u′ − 2u = 5.

The integration factor is then I = e−
R

2 dx = e−2x. Thus,

u′e−2x − 2ue−2x = 5e−2x,

ue−2x = −5
2
e−2x + C,

where C is an arbitrary constant. But u = y′, so

y = −5
2
x +

C

2
e2x + C1 = −5

2
x + C1e

2x + C2

on the domain R, where C1 and C2 are arbitrary constants. ♦

We now look at standard substitutions.

2.5.1 Bernoulli Equation

The Bernoulli equation is given by

dy

dx
+ P (x)y = Q(x)yn.

Let z = y1−n. Then
dz

dx
= (1− n) y−n dy

dx
,
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giving us

y−n dy

dx
+ P (x)y1−n = Q(x),

1
1− n

dz

dx
+ P (x)z = Q(x),

dz

dx
+ (1− n) P (x)z = (1− n) Q(x),

which is linear in z.

Example 2.17. Solve y′ + xy = xy3. ∗

Solution. Here, we have n = 3. Let z = y−2. If y 6= 0, then

dz

dx
= −2y−3 dy

dx
.

Therefore, our equation becomes

−y3z′

2
+ xy = xy3,

−z′

2
+ xy−2 = x,

z′ − 2xy = −2x.

We can readily see that I = e−
R

2x dx = e−x2
. Thus,

e−x2
z′ − 2xe−x2

= −2xe−x2
,

e−x2
z = e−x2

+ C,

z = 1 + Cex2
,

where C is an arbitrary constant. But z = y−2. So

y = ± 1√
1 + Cex2

.

The domain is R, C > −1,

|x| >
√
− ln(−C), C ≤ −1.

An additional solution is y = 0 on R. ♦
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2.5.2 Homogeneous Equations

Definition (Homogeneous function of degree n)
A function F (x, y) is called homogeneous of degree n if F (λx, λy) = λnF (x, y).
For a polynomial, homogeneous says that all of the terms have the same degree.

Example 2.18. The following are homogeneous functions of various degrees:

3x6 + 5x4y2 homogeneous of degree 6,

3x6 + 5x3y2 not homogeneous,

x
√

x2 + y2 homogeneous of degree 2,

sin
(y

x

)
homogeneous of degree 0,

1
x + y

homogeneous of degree −1. ∗

If F is homogeneous of degree n and G is homogeneous of degree k, then
F/G is homogeneous of degree n− k.

Proposition 2.19
If F is homogeneous of degree 0, then F is a function of y/x.

Proof. We have F (λx, λy) = F (x, y) for all λ. Let λ = 1/x. Then F (x, y) =
F (1, y/x). �

Example 2.20. Here are some examples of writing a homogeneous function of
degree 0 as a function of y/x.√

5x2 + y2

x
=

√
5 +

(y

x

)2

,

y3 + x2y

x2y + x3
=

(y/x)3 + (y/x)
(y/x) + 1

. ∗

Consider M(x, y) dx + N(x, y) dy = 0. Suppose M and N are both homoge-
neous and of the same degree. Then

dy

dx
= −M

N
,
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This suggests that v = y/x (or equivalently, y = vx) might help. In fact, write

−M(x, y)
N(x, y)

= R
(y

x

)
.

Then
dy

dx︸︷︷︸
v+x dv

dx

= R
(y

x

)
= R(v).

Therefore,

x
dv

dx
= R(v)− v,

dv

R(v)− v
=

dx

x
,

which is separable. We conclude that if M and N are homogeneous of the same
degree, setting y = vx will give a separable equation in v and x.

Example 2.21. Solve xy2 dy =
(
x3 + y3

)
dx. ∗

Solution. Let y = vx. Then dy = v dx + x dv, and our equation becomes

xv2x2 (v dx + x dv) =
(
x3 + v3x2

)
dx,

x3v3 dx + x4v2 dv = x3 dx + v3x3 dx.

Therefore, x = 0 or v2 dv = dx/x. So we have

v3

3
= ln(|x|) + C = ln(|x|) + ln(|A|)︸ ︷︷ ︸

C

= ln(|Ax|) = ln(Ax) .

where the sign of A is the opposite of the sign of x. Therefore, the general
solution is y = x (3 ln(Ax))1/3, where A is a nonzero constant. Every A > 0
yields a solution on the domain (0,∞); every A < 0 yields a solution on (−∞, 0).
In addition, there is the solution y = 0 on the domain R. ♦

2.5.3 Substitution to Reduce Second Order Equations to

First Order

A second order de has the form

F (y′′, y′, y, x) = 0.
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If it is independent of y, namely, F (y′′, y′, x) = 0, then it is really just a first
order equation for y′ as we saw in earlier examples.

Consider now the case where it is independent of x, namely, F (y′′, y′, y) = 0.
Substitute v = dy/dx for x, i.e., eliminate x between the equations

F

(
d2y

dx2
,
dy

dx
, y

)
= 0

and v = dy/dx. Then

d2y

dx2
=

dv

dx
=

dv

dy

dy

dx
=

dv

dy
v.

Therefore,

F

(
d2y

dx2
,
dy

dx
, y

)
= 0 F

(
dv

dy
v, v, y

)
= 0.

This is a first order equation in v and y.

Example 2.22. Solve y′′ = 4 (y′)3/2
y. ∗

Solution. Let v = dy/dx. Then

d2y

dx2
=

dv

dy
v

and our equation becomes

dv

dy
v = 4v3/2y,

dv√
v

= 4y dy, v ≥ 0,

2
√

v = 2y2 + C1,
√

v = y2 + C2,
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where C1 is an arbitrary constant and C2 = C1/2. But v = dy/dx, so we have

dy

dx
=
(
y2 + C2

)2
,

dx =
dy

(y2 + C2)
2 ,

x =
∫

dy

(y2 + C2)
2

=


1

2C
3/2
2

(
tan−1

(
y√
C2

)
+

√
C2y

y2+C2

)
+ C3, C2 > 0,

− 1
3y3 + C3, C2 = 0,

− 1
2(−C2)

3/2 · y2

y2+C2
+ C3, C2 < 0.

♦

Next consider second order linear equations. That is,

P (x)y′′ + Q(x)y′ + R(x)y = 0.

We can eliminate y by letting y = ev. Then y′ = evv′ and y′′ = ev (v′)2 + evv′′.
The equation then becomes

P (x)
(
ev (v′)2 + evv′′

)
+ Q(x)evv′ + R(x)ev = 0,

which is a first order equation in v′.

Example 2.23. Solve x2y′′ +
(
x− x2

)
y′ − e2xy = 0. ∗

Solution. Let y = ev. Then the equation becomes

x2ev (v′)2 + x2evv′′ +
(
x− x2

)
evv′ − e2xev = 0.

Write z = v′. Then
x2z′ + x2z2 + (1− x) xz = e2x.

Now we are on our own—there is no standard technique for this case. Suppose
we try u = xy. Then z = u/x and

z′ = − u

x2
+

1
x

u′.

Then it follows that
xu′ + u2 − xu = e2x.

This is a bit simpler, but it is still nonstandard. We can see that letting u = sex
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will give us some cancellation. Thus, u′ = s′ex + sex and our equation becomes

xs′ex +���xsex + s2e2x −���xsex = e2x,

xs′ + s2ex = ex,

xs′ = ex
(
1− s2

)
,

s′

1− s2
=

ex

x
,

1
2

ln
(∣∣∣∣1 + s

1− s

∣∣∣∣) =
∫

ex

x
dx.

Working our way back through the subsitutions we find that s = zxe−x so our
solution becomes

1
2

ln
(∣∣∣∣1 + zxe−x

1− zxe−x

∣∣∣∣) =
∫

ex

x
dx.

Using algebra, we could solve this equation for z in terms of x and then integrate
the result to get v which then determines y = ev as a function of x. The
algebraic solution for z is messy and we will not be able to find a closed form
expression for the antidervative v, so we will abandon the calculation at this
point. In practical applications one would generally use power series techniques
on equations of this form and calculate as many terms of the Taylor series of
the solution as are needed to give the desired accuracy. ♦

Next consider equations of the form

(a1x + b1y + c1) dx + (a2x + b2y + c2) dy = 0.

If c1 = c2 = 0, the equation is homogeneous of degree 1. If not, try letting
x̄ = x − h and ȳ = y − k. We try to choose h and k to make the equation
homogeneous. Since h and k are constants, we have dx̄ = dx and dȳ = dy.
Then our equation becomes

(a1x̄ + a1h + b1ȳ + b1k + c1) dx̄ + (a2x̄ + a2h + b2ȳ + b2k + c2) dȳ = 0.

We want a1h + b1k = −c1 and a2h + b2k = −c2. We can always solve for h and
k, unless ∣∣∣∣∣ a1 b1

a2 b2

∣∣∣∣∣ = 0.
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So suppose ∣∣∣∣∣ a1 b1

a2 b2

∣∣∣∣∣ = 0.

Then (a2, b2) = m (a1, b1). Let z = a1x + b1y. Then dz = a1 dx + b1 dy. If
b1 6= 0, we have

dy =
dz − a1 dx

b1
,

(z + c1) dx + (mz + c2)
dz − a1 dx

b1
= 0,(

z + c1 +
a1

b1

)
dx +

(
mz + c2

b1

)
dx = 0,

b1 dx = − mz + c2

z + c1 + a1/b1
dz.

This is a separable equation.
If b1 = 0 but b2 6= 0, we use z = a2x + b2y instead. Finally, if both b1 = 0

and b2 = 0, then the original equation is separable.


