
Weighted Graphs

Definition

A weighted graph, (V ,E ,w), is a graph (V ,E) together with a weight
function w : E → R. If e ∈ E , then w(e) is the weight of edge e.

For example, the graph at the right
is a weighted graph of K4.

a b

cd

3

5
2 6

4

7

Often weights are associated with a cost or a benefit incurred when
traversing the edge. Many important problems involve finding a trail, path,
or circuit with minimum cost.

MAT230 (Discrete Math) Graph Theory Fall 2019 45 / 72

The Traveling Salesman Problem

A very important problem is known as the Traveling Salesman Problem
(TSP). Consider a salesman who must visit n different cities (or offices
within a city). There is a cost associated with travel between each location
he must visit and he’s interested in completing his rounds as efficiently as
possible based on some measure (least cost, or perhaps shortest time).

The TSP can be stated as: Given a connected, weighted graph G , find a
Hamiltonian circuit in G of minimum total weight.

When the number of vertices in a graph is small, we can find every
possible Hamiltonian circuit and just pick one with smallest weight.

MAT230 (Discrete Math) Graph Theory Fall 2019 46 / 72

The Traveling Salesman Problem

For example, consider all possible cycles (a circuit that only visits each
vertex once, except the start/end vertex) in our weighted K4.

a b

cd

3

5
2 6

4

7

cycle weight

a b c d a 3 + 6 + 7 + 2 = 18
a b d c a 3 + 4 + 7 + 5 = 19
a c b d a 5 + 6 + 4 + 2 = 17
a c d b a 5 + 7 + 4 + 3 = 19
a d b c a 2 + 4 + 6 + 5 = 17
a d c b a 2 + 7 + 6 + 3 = 18

There are six cycles – but half of these are reversals of the other half.

The starting point is arbitrary – a given cycle will have the same cost
regardless of starting point.

MAT230 (Discrete Math) Graph Theory Fall 2019 47 / 72

The Traveling Salesman Problem

Question: How many different Hamiltonian circuits does Kn have?

Answer: Every vertex in Kn is connected to every other vertex.

There are P(n, n) = n! ways to pick a starting vertex and choose a
path that returns to the starting vertex.

We must divide this by n since our count includes n identical cycles
that differ only in starting point.

We must divide by 2 since the forward and reverse of a cycle should
be considered the same.

Thus, there are
n!

2n
=

(n − 1)!

2
different Hamiltonian circuits in Kn.

This is rather bad news. . .

MAT230 (Discrete Math) Graph Theory Fall 2019 48 / 72

The Traveling Salesman Problem

Suppose a computer can generate and check the cost of 106 Hamiltonian
circuits in a graph every second. (For the sake of simplicity we assume
that this time is independent of the number of vertices in the graph).

When n = 10, this computer can solve the TSP in under a second.

When n = 12, however, it takes this computer 20 seconds to solve the
TSP.

When n = 15 it will take over 12 hours. . .

and when n = 20 it would take over 1900 years.

Granted, this is a brute-force approach to solving the TSP. The best
known optimal algorithm has an operation count on the order of n22n

(i.e., O(n22n)), which means that when the number of vertices in the
graph increases by one, it will take more than twice as long to find an
optimal Hamiltonian circuit.

MAT230 (Discrete Math) Graph Theory Fall 2019 49 / 72

The Traveling Salesman Problem

This situation is bleak, but it is much better if we are willing to accept a
nearly optimal solution to the TSP.

It is not unreasonable to assume that we are solving the TSP on a
complete graph since edges do not necessarily indicate routes between
locations but costs associated with traveling from one location to another.

Two simple algorithms we’ll consider for the TSP on a complete graph are
both greedy algorithms; they are multistep algorithms that make optimal
choices at each step with the assumption that this will lead to a near
optimal overall result.

In practice, these often work well but can produce far from optimal circuits
in certain cases.

MAT230 (Discrete Math) Graph Theory Fall 2019 50 / 72

The Traveling Salesman Problem

Let G be a weighted graph based on Kn.

Vertex Greedy Algorithm
(VGA)

1 Identify starting vertex as v1
and create set V = {v1}.

2 For i = 2 to n:
I Let vi be an unvisited

vertex v for which the
edge from vi−1 to v has
minimum weight.

I V = V ∪ {vi}.
3 Set vn+1 = v1.

Edge Greedy Algorithm (EGA)

1 Sort edges by weight.

2 Identify edge of minimum weight as
e1 and create set
V = {v : e1 is incident to v}.
Initialize i = 2.

3 While |V | < n:
I Let ei be an edge of minimum

weight that does not create a
cycle of length less than n or
create a vertex of degree 3 in V .

I V = V ∪ {v : ei incident to v}.
I i = i + 1.

MAT230 (Discrete Math) Graph Theory Fall 2019 51 / 72

The Traveling Salesman Problem

The following graph shows the cost of flying between Seattle (S), Phoenix
(P), New Orleans (NO), New York (NY), and Boston (B).

S B

NY

NOP

409

389

429
119

379

319

309

239

229

109

MAT230 (Discrete Math) Graph Theory Fall 2019 52 / 72

The Traveling Salesman Problem

Example

Find near-optimal Hamiltonian cycles using the VGA and the EGA.

VGA
V Cost

B $0
B, NY $109
B, NY, NO $338
B, NY, NO, P $647
B, NY, NO, P, S $766
B, NY, NO, P, S, B $1,175

EGA
ei Cost

(B,NY) $109
(S,P) $228
(NY,NO) $457
(NO,P) $766
(B,S) $1,175

In this case both algorithms find the same cycle; this isn’t always true.

MAT230 (Discrete Math) Graph Theory Fall 2019 53 / 72

The Traveling Salesman Problem

The graph in our last example is K5, so there are 4!
2 = 12 Hamiltonian

cycles. Checking all of them reveals that the optimal cycle is Boston,
NY, Seattle, Phoenix, New Orleans, Boston with a cost of $1,165.

The ratio of the cost we found to the true optimal cost is

1175

1165
≈ 1.0086

This means that the near-optimal cycle found incurs an extra cost of
only 0.86%. In this case we’d probably consider the cycle we found to
be acceptable.

MAT230 (Discrete Math) Graph Theory Fall 2019 54 / 72

