
Theorems

Theorem

Let G be a connected graph. Then G is Eulerian if and only if every vertex
in G has even degree.

Theorem (Handshaking Lemma)

In any graph with n vertices vi and m edges

n∑
i=1

deg(vi ) = 2m

Corollary

A connected non-Eulerian graph has an Eulerian trail if and only if it has
exactly two vertices of odd degree. The trail begins and ends these two
vertices.
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Theorems

Theorem

If T is a tree with n edges, then T has n + 1 vertices.

Theorem

Two graphs that are isomorphic to one another must have

1 The same number of nodes.

2 The same number of edges.

3 The same number of nodes of any given degree.

4 The same number of cycles.

5 The same number of cycles of any given size.
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Theorems

Theorem (Kuratowski’s Theorem)

A graph G is nonplanar if and only if it contains a “copy” of K3,3 or K5 as
a subgraph.

Theorem (Euler’s Formula for Planar Graphs)

For any connected planar graph G embedded in the plane with V vertices,
E edges, and F faces, it must be the case that

V + F = E + 2.
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Graphs vs Plots

Recall that a graph consists of two sets: a set of vertices and a set of
edges.

While we often represent graphs visually, we can distinguish between a
graph and a plot in the following way: A graph stores information and
connections between information while a plot provides a visual
representation of the information stored in a graph.

Given that graphs are important, we now examine how we can represent
graphs using a computer and see how one computer package handles
graphs.
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A Quick Matrix Review

A matrix is a rectangular array of numbers. A matrix with m rows and n
columns said to be an m × n matrix.

Entries in the matrix are addressed by their row and column numbers.
Given a matrix A, the entry aij is in the i th row and j th column of A.
Notice that we always list the row index first.

We say a matrix A is symmetric if aji = aij .

Not Symmetric
0 5 2 1
1 3 0 1
4 6 8 3
0 7 3 1


Symmetric
0 3 7 1
3 8 5 0
7 5 2 4
1 0 4 0


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Adjacency Matrices
Let G be a graph with n vertices. We can use an n× n matrix to store the
graph. Let

gij =

{
1 if vertex i is adjacent to vertex j
0 if vertex i is not adjacent to vertex j

For example, the graph on the left has the adjacency matrix on the right.

1

2

3

4


0 1 0 0
1 0 0 1
0 0 0 1
0 1 1 0


Note: matrix is symmetric

The adjacency matrix for a directed graph will not be symmetric unless the
directed graph itself is symmetric.
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Sparse Graphs and Matrices

Consider K30, the complete graph with 30 vertices. This graph has
C (30, 2) = 435 edges since every vertex is connected to every other vertex.
The adjacency matrix will have 1’s in every non-diagonal position (why not
on the diagonals?). We say the 30× 30 adjacency matrix is dense or full
since most of the entries are non-zero.

Now consider C30, a cycle (or ring) graph with 30 vertices. Each vertex is
connected to two other vertices to form a single ring or cycle. This means
there are only 30 edges. So, while the adjacency matrix will be 30× 30,
only 60 entries in it will be non-zero. In this case we say the graph and the
adjacency matrix are sparse.
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Adjacency Matrix Examples

Adjacency matrix for K8

8× 8 matrix with 64 elements
2 · C (8, 2) = 56 non-zero entries

0 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1
1 1 0 1 1 1 1 1
1 1 1 0 1 1 1 1
1 1 1 1 0 1 1 1
1 1 1 1 1 0 1 1
1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 0



Adjacency matrix for C8

8× 8 matrix with 64 elements
8 non-zero entries

0 1 0 0 0 0 0 1
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
1 0 0 0 0 0 1 0


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