Raniganj Girls' College Fifth Semester Mathematics (Hons) Code: DSE1 Linear Algebra

- **1.** (a) Let T: \mathbb{R}^3 R³ be a linear operator defined by T(a, b, c) = (3a, a b, 2a + b + c). Prove that $(T^2 - I)(T - 3I) = 0$.
 - (b) Let T: $R^2 = R^2$ be a linear transformation such that T(2,3) = (1,0) and T(3,2) = (1,-1). Find the matrix representation of T.
 - (c) Let T: $R^3 R^3$ be a linear transformation defined by T(x, y, z) = (x+2y z, y + z, x + y-2z). Find the basis and dimension of (i) image of T, (ii) kernel of T.

2. (a) If T: V W be a linear transformation, prove that R(T) is a subspace of W.

- (b) Let T: V W be a linear transformation defined by T(x, y, z) = (x + y, x y, 2x + z). Find the rank and nullity of T.
- (c) Find the matrix of the linear transformation T:V₂(R) V₃(R) defined by T(x, y) = (x + y, x, 3x y) with respect to bases B₁ = {(1,1), (3,1)} and B₂ = { (1,1,1), (1,1,1), (1,0,0) }.
- 3. (a) Define an inner product space. For any vectors α , β in an inner product space V,

prove that $\| \alpha + \beta \| \le \| \alpha \| + \| \beta \|$.

- (b) Prove that an orthogonal set of non zero vectors is linearly independent.
- (c) Apply the Gram-Schmidt orthogonalization process to find an orthonormal basis for the subspace of R^4 spanned by the vectors $v_1 = (1,1,1,1)$, $v_2 = (1,2,4,5)$, $v_3 = (1,-3,-4,-2)$.

8 (a) If V is an inner product space, then for any vectors α , β in V and any scalar C, prove that

(i) $||C \alpha || = |C| || \alpha ||$ (ii) $\| (\alpha, \beta) \leq \| \alpha \| \| \beta \|$

(b) Prove that every finite dimensional inner product space has an orthonormal basis.

(c) Find the QR-decomposition of the matrix

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

- 9. (a) Diagonalize the matrix A, given that $A = \begin{bmatrix} -19 & 6 \\ -47 & 16 \end{bmatrix}$ (b) Find the minimum and maximum values of $Q(x) = 9x^2 + 4y^2 + 3z^2$ subject to the
 - constraint $x^T x = 1$.
 - (c) Find the singular value decomposition of A = $\begin{pmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{pmatrix}$
 - 10.(a) Make a change of variable x = p y that transforms the quadratic form $8x_1^2 x_1^2 x_2^2 5x_2^2$ into a quadratic form with no cross product term .
 - (**b**) Orthogonally diagonalize the matrix $A = \begin{pmatrix} 3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3 \end{pmatrix}$
 - (c) Find the singular value decomposition of $A = \begin{pmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{pmatrix}$
