Raniganj Girls College

Department of Mathematics

UG Examination

5th Semester

Discipline: Mathematics

Course Name: Elements of Topology and Functional Analysis

Course Code: BSCHMTMDSE501

Full Marks: 40

Time : 2 hrs

Marks 5×1

 5×2

Q.No

- 1. Answer any five questions:
- (a) Find the closure of the set $S = \{ 1 + \frac{1}{n} : n \in N \}$ in usual topology on R.
- (b) Let $X=\{a\}$. Then, what are the difference between discrete topology and indiscrete topology on X?
- (c) Define limit point compactness in a topological space.
- (d) Define Metric Topology.
- (e) What is separated sets in a topological space?
- (f) Which is finer topology between R₁- lower limit topology in Real line and R- standard topology in Real line?
- (g) Define Banach Space.
- (h) State Parallelogram law in Hilbert Space.
- 2. Answer any five questions:
- (a) Define Neighbourhood Basis of a topological space (X,ρ) .
- (b) Define First Countable Space. Give an example.
- (c) Define Basis for a Topology.
- (d) Whether, R-the real line is connected ?

Q.No

(e)	Define Lindelof Space	e. Give an example.
(-)		

- (f) Define Pre-Hilbert Space.
- (g) What is Orthonormal sets in a Hilbert Space?
- (h) Check, whether l_p , for $p \neq 2$ is an inner product space or not ?

3.	Answer a	ny three questions:	3×5
(a)	Prove that, in a topological space (X,ρ) ,		
	(i)	Any set C, containing a dense set D, is a dense set.	
	(ii)	If A is a dense set, and B is a dense on A, then B is also a dense set.	2.5+2.5

- (b)
- (i) Define T_0 , T_1 and T_2 space in a topological space (X, ρ) . 3×1
- (ii) Let, $X = \{a,b,c\}$, and $\rho = \{\phi, \{a\}, \{a,b\}, X\}$. Then, prove that (X, ρ) is a T₀ space, but not a T₁ 2 space. 2
- (c) Let, A be a connected subset in a topological space (X, ρ) . If $A \subset B \subset \overline{A}$, then prove that B is also Connected.
- (d) Prove that, any closed subspace of a compact space is compact.
- (e) Let, $e_1, e_2, ..., e_n, ...$ be an orthonormal sequence in a Hilbert space H. Then Prove that, for every $x \in H$,

$$\sum_{i=1}^{\infty} |(x, e_i)|^2 \leq ||x||^2.$$

4.	Answer any one questions:	1×10
(a) (i)	If f is a homeomorphism of (X, o_1) onto (Y, o_2) and g is a homeomorphism of (Y, o_2) onto	5

(1) If *f* is a homeomorphism of (X,ρ_1) onto (Y,ρ_2) and *g* is a homeomorphism of (Y,ρ_2) onto (Z,ρ_3) , then prove that, $g \circ f$ is a homeomorphism of (X,ρ_1) onto (Z,ρ_3)

(ii)	Prove that, every Metrizable space is Normal.	5
(b) (i)	Prove that, the image of a connected space under a continuous map is connected.	5
(ii)	Prove that, compactness implies limit point compactness in a topological space, but the converse is not true.	5

(c) (i)	Prove that, a Banach space is a Hilbert space if and only if the parallelogram law holds.	6
(ii)	Prove that, the space C[a,b] is not a Hilbert space.	4