Raniganj Girls' College Department of Mathematics 5th semester(Honours) Subject-Mathematics Pape-CC 11

Some Important Question

1. questions of 2 marks each

- (a) If (X,d) is a connected metric space, prove that either X is a single-pointic set or it is an infinite set.
- (b) If d is a metric on X, then show that $\frac{d}{1+d}$ is also a metric on X.
- (c) If {x_n} and {y_n} are Cachy sequences in a metric space (X, d) then show that {d(x_n, y_n)} is a convergent sequence.
- (d) Let $f:c[a,b] \to R$ (the space of reals with usual metric) be defined by $f(x) = x(t_0)$, where t_0 is a fixed real number. Prove that f is continuous.
- (e) Give an example to show that intersection if an infinite number of non-empty open sets is not an open set.
- (f) For any complex number z, show that $|e^z| \le e^{|z|}$.
- (g) Find all the limiting points of the sequence $\{z_n\}$ where $z_n = (-1)^n + \frac{n}{n+1}i$.

2. questions of 5 marks each

a. Let (X, d) be a metric space, and let

$$d^*(x, y) = \frac{d(x, y)}{1 + d(x, y)}$$
, for all x, y in X.

Then prove that d^* is a bounded metric on X which is equivalent to d.

(b) Defined Fixed-point mapping. Let T be a mapping from a metric space (X,d) to itself. Prove that If T is contraction on X, then T is continuous on X

(c) Prove that in a metric space (X, d), a subset $F \subset M$ is closed if and only if its complement is open.

(d)Define closed set. If |a| < 1, show that $\int_{0}^{\pi} \frac{\log(1 + a \cos x)}{\cos x} dx = \pi \sin^{-1} a$.

(e) If f(z) = u(x, y) + iv(x, y) is differentiable at $z_0 = x_0 + iy_0$, show that $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ at (x_0, y_0) .

(f) (i) Show that an analytic function with constant modulus in a domain is constant.

(ii) Examine the differentiability of the function

$$f(z) = \begin{cases} xy^{2}(x+iy), & \text{if } z \neq 0\\ 0, & \text{if } z = 0 \end{cases}$$

at $z = 0.$ 1+4

(g) (i) Prove that every function continuous over [a,b] is Riemann integrable. Is the converse true?Answer with reasons.

(ii) Let

$$f(x) = \begin{cases} x, if \ x \text{ is a rational number in } [0,1] \\ 0, if \ x \text{ is an irrational number in } [0,1] \end{cases}$$
Examine whether $\int_{0}^{1} f(x) dx$ exists in Riemann sense.

(h) Let X be an infinite set with the discrete metric. Show that (X, d) is not compact

(i) Define pointwise convergence and uniform convergence of a sequence of functions. Prove that uniform convergence implies pointwise convergence but not conversely.

(j) Let X be the set of all continuous real-valued functions defined on [0,1],

and let
$$d(x, y) = \int_{0}^{1} |x(t) - y(t)| dt$$
, $\forall x, y \in X$. Show that (X, d) is not complete.

(k) Define closed set. Prove that in a metric space (X, d), a subset $F \subset M$ is closed if and only if its complement is open.