`RANIGANJ GIRLS' COLLEGE

Mathematics (Generic)

(Second Semester)

SECOND PAPER

Full Marks: 10

Attempt the following questions and put tick mark in the appropriate answer

 $(1 \times 10 = 10)$

- (1) The value of $\frac{3n+2}{n+3}$, when $n \to \infty$ is
- (a) 2
- (b)

-2

(c)

3

(d) 4

- (2) The sequence $\left\{\frac{n+3}{2n+1}\right\}$ is
- (a) Monotonic Increasing
- (b) Monotonic Decreasing
- (c) Bounded
- (d) Monotonic Decreasing and Bounded
- (3) The solution of $\frac{dy}{dx} + y = x$ is
- (a) $y = (x-1) + ce^{-x}$ (b) $y = (x-1) + ce^{x}$ (c) $y = (x+1) + ce^{-x}$ (d) $y = x + ce^{-x}$
- (4) Envelope of the family of straight lines $y = mx + \frac{a}{m}$ is
- (a) $x^2 + y^2 = a^2$ (b) $xy = a^2$ (c) $y^2 = 4ax$ (d) $x^2 = 4ay$

- (5) A closed curve has
- (a) No asymptotes (b)
- one asymptote (c) Finitely many asymptotes (d) n asymptotes
- (6) Radius of curvature of the curve $y = e^x$ at the point (0, 1) is

- (a) $2\sqrt{2}$ (b) $3\sqrt{2}$ (c)
- - 0 (d) None of these

- $(7) \int_{1}^{\frac{\pi}{2}} \log \sin x dx \text{ is}$
- (a) Convergent (b) Divergent (c) Neither convergent nor divergent (d) None of these
- (8) The value of $\int_{0}^{\infty} e^{-x} x^4 dx$ is
- (a) 24
- (b) 12 (c) 48 (d) 6
- (9) If $z = \tan^{-1} \left(\frac{\sqrt{x} \sqrt{y}}{\sqrt{x} + \sqrt{y}} \right)$ then the value of $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y}$ is
- (a) $\sin z \cos z$
- (b)
- 0 (c) tan z
 - (d) None of these
- (10) P. I. of the differential equation $(D^2 + D + 1)y = e^{-x}$ is

- (a) e^{-x} (b) $-e^{-x}$ (c) $3e^{-x}$ (d) $\frac{1}{3}e^{-x}$